Department of Electronic Engineering , Kwangwoon University , Seoul 01897 , Korea.
School of Electrical Engineering , KAIST , Daejeon 34141 , Korea.
ACS Sens. 2019 Jun 28;4(6):1724-1729. doi: 10.1021/acssensors.9b00731. Epub 2019 Jun 14.
Owing to their simple and low-cost architecture, extended-gate biosensors based on the combination of a disposable sensing part and a reusable transducer have been widely utilized for the label-free electrical detection of chemical and biological species. Previous studies have demonstrated that sensitive and selective detection of ions and biomolecules can be achieved by controlled modification of the sensing part with an ion-selective membrane and receptors of interest. However, no systematic studies have been performed on the impact of the transducer on sensing performance. In this paper, we introduce the concept of a nanoscale field-effect transistor (FET) as a reusable and sensitive transducer for extended-gate biosensors. The capacitive effect from the external sensing part can degrade the sensing performance, but the nanoscale FET can reduce this effect. The nanoscale FET with a gate-all-around (GAA) structure exhibits a higher pH sensitivity than a commercially available FET, which is widely used in conventional extended-gate biosensors. A sensitivity reduction is observed for the commercial FET, whereas the pH sensitivity is insensitive to the area of the sensing region in the nanoscale FET, thus allowing the scaling of the detection area. Our analysis based on a capacitive model suggests that the high pH sensitivity in the compact sensing area originates from the small input capacitance of the nanoscale FET transducer. Moreover, a decrease in the nanowire width of the GAA FET leads to an improvement in the pH sensitivity. The extended-gate approach with the nanoscale FET-based transduction can pave the way for a highly sensitive analysis of chemical and biological species with a small sample volume.
由于其简单且低成本的结构,基于组合一次性传感部分和可重复使用换能器的扩展门生物传感器已被广泛用于化学和生物物种的无标记电检测。先前的研究表明,通过对传感部分进行离子选择性膜和感兴趣的受体的受控修饰,可以实现对离子和生物分子的敏感和选择性检测。然而,对于换能器对传感性能的影响尚未进行系统研究。在本文中,我们引入了纳米场效应晶体管 (FET) 作为扩展门生物传感器的可重复使用和敏感换能器的概念。外部传感部分的电容效应会降低传感性能,但纳米 FET 可以降低这种效应。具有全环绕栅极 (GAA) 结构的纳米 FET 比商用 FET 具有更高的 pH 灵敏度,商用 FET 广泛用于传统的扩展门生物传感器。商用 FET 观察到灵敏度降低,而纳米 FET 的 pH 灵敏度对传感区域的面积不敏感,因此可以扩展检测区域。我们基于电容模型的分析表明,紧凑传感区域中的高 pH 灵敏度源于纳米 FET 换能器的小输入电容。此外,GAA FET 的纳米线宽度减小会导致 pH 灵敏度提高。基于纳米 FET 换能器的扩展门方法可以为具有小样本量的化学和生物物种的高灵敏度分析铺平道路。