Departments of Neurophysiology and Neural Repair,
Molecular and Cellular Neurobiology.
J Neurosci. 2019 Aug 7;39(32):6339-6353. doi: 10.1523/JNEUROSCI.2002-18.2019. Epub 2019 Jun 14.
ADP-ribosylation factors (ARFs) are a family of small monomeric GTPases comprising six members categorized into three classes: class I (ARF1, 2, and 3), class II (ARF4 and 5), and class III (ARF6). In contrast to class I and III ARFs, which are the key regulators in vesicular membrane trafficking, the cellular function of class II ARFs remains unclear. In the present study, we generated class II ARF-deficient mice and found that ARF4/ARF5 mice exhibited essential tremor (ET)-like behaviors. electrophysiological recordings revealed that ARF4/ARF5 mice of both sexes exhibited abnormal brain activity when moving, raising the possibility of abnormal cerebellar excitability. Slice patch-clamp experiments demonstrated the reduced excitability of the cerebellar Purkinje cells (PCs) in ARF4/ARF5 mice. Immunohistochemical and electrophysiological analyses revealed a severe and selective decrease of pore-forming voltage-dependent Na channel subunit Nav1.6, important for maintaining repetitive action potential firing, in the axon initial segment (AIS) of PCs. Importantly, this decrease in Nav1.6 protein localized in the AIS and the consequent tremors in ARF4/ARF5 mice could be alleviated by the PC-specific expression of ARF5 using adeno-associated virus vectors. Together, our data demonstrate that the decreased expression of the class II ARF proteins in ARF4/ARF5 mice, leading to a haploinsufficiency of ARF4 in the absence of ARF5, impairs the localization of Nav1.6 to the AIS and hence reduces the membrane excitability in PCs, resulting in the ET-like movement disorder. We suggest that class II ARFs function in localizing specific proteins, such as Nav1.6, to the AIS. We found that decreasing the expression of class II ARF proteins, through the generation of ARF4/ARF5 mice, impairs Nav1.6 distribution to the axon initial segment (AIS) of cerebellar Purkinje cells (PCs), thereby resulting in the impairment of action potential firing of PCs. The ARF4/ARF5 mutant mice exhibited movement-associated essential tremor (ET)-like behavior with pharmacological profiles similar to those in ET patients. The exogenous expression of ARF5 reduced the tremor phenotype and restored the localization of Nav1.6 immunoreactivity to the AIS in ARF4/ARF5 mice. Thus, our results suggest that class II ARFs are involved in the localization of Nav1.6 to the AISs in cerebellar PCs and that the reduction of class II ARF activity leads to ET-like movement disorder.
ADP-核糖基化因子 (ARFs) 是一个由六个成员组成的小单体 GTP 酶家族,分为三类:I 类 (ARF1、2 和 3)、II 类 (ARF4 和 5) 和 III 类 (ARF6)。与作为囊泡膜运输关键调节剂的 I 类和 III 类 ARFs 不同,II 类 ARFs 的细胞功能尚不清楚。在本研究中,我们生成了 II 类 ARF 缺陷小鼠,并发现 ARF4/ARF5 小鼠表现出类似特发性震颤 (ET) 的行为。电生理记录显示,雌雄 ARF4/ARF5 小鼠在运动时表现出异常的大脑活动,提示小脑兴奋性异常。切片膜片钳实验表明,ARF4/ARF5 小鼠小脑浦肯野细胞 (PCs) 的兴奋性降低。免疫组织化学和电生理分析显示,在 PCs 的轴突起始段 (AIS) 中,重要的是维持重复动作电位发射的孔形成电压依赖性 Na 通道亚基 Nav1.6 严重且选择性减少。重要的是,这种 Nav1.6 蛋白在 AIS 中的定位减少以及 ARF4/ARF5 小鼠的震颤可以通过腺相关病毒载体特异性表达 ARF5 来缓解。总之,我们的数据表明,ARF4/ARF5 小鼠中 II 类 ARF 蛋白表达减少,导致 ARF5 缺失时 ARF4 的单倍不足,破坏 Nav1.6 向 AIS 的定位,从而降低 PCs 的膜兴奋性,导致类似 ET 的运动障碍。我们认为,II 类 ARF 蛋白在将特定蛋白(如 Nav1.6)定位到 AIS 中发挥作用。我们发现,通过生成 ARF4/ARF5 小鼠,降低 II 类 ARF 蛋白的表达,会损害小脑浦肯野细胞 (PCs) 的轴突起始段 (AIS) 中 Nav1.6 的分布,从而导致 PCs 动作电位发射受损。ARF4/ARF5 突变小鼠表现出与 ET 患者相似的运动相关特发性震颤 (ET) 样行为。外源性表达 ARF5 可减少震颤表型并恢复 ARF4/ARF5 小鼠中 Nav1.6 免疫反应性在 AIS 的定位。因此,我们的结果表明,II 类 ARF 参与了小脑 PCs 中 Nav1.6 向 AIS 的定位,而 II 类 ARF 活性的降低导致了类似 ET 的运动障碍。