Sant A J, Braunstein N S, Germain R N
Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892.
Proc Natl Acad Sci U S A. 1987 Nov;84(22):8065-9. doi: 10.1073/pnas.84.22.8065.
Cell surface expression of class II major histocompatibility complex-encoded (Ia) molecules depends on association of the component alpha and beta chains into a stable heterodimer. In the mouse, two isotypes of class II molecules have been identified, A beta A alpha and E beta E alpha. However, experiments from this laboratory have shown that, following DNA-mediated gene transfer into murine L cells, an A beta E alpha-mixed-isotype molecule can be assembled and expressed at the cell surface. In the present study, we have investigated the structural features of the beta chain that control the extent of association and level of membrane expression of A beta E alpha interisotypic pairs. The use of intact allelic A beta genes demonstrated that only A beta d chains, but not A beta b or A beta k chains, can be coexpressed on the surface membrane with E alpha chains. Transfection of recombinant A beta genes that encode all or half of the beta 1 domain from one allele and the rest of the chain from another allele revealed that the 5-7 polymorphic residues in the amino-terminal 50 residues of the A beta chain completely controlled this variation in expression with E alpha. Isotypically mixed beta genes encoding the A beta 1 domain of either A beta d or A beta k chains and the beta 2, transmembrane, and intracytoplasmic portions of E beta chains were used to assess the role of isotypically conserved structures in alpha beta pairing and expression. In marked contrast to the major alterations in expression accompanying changes in the amino-terminal polymorphic residues, exchange of these carboxyl-terminal isotypic segments had no detectable influence on the efficiency of expression with either A alpha or E alpha chains. These results argue strongly that variations in the efficiency with which distinct Ia alpha beta dimers assemble and are transported to the membrane is determined almost exclusively by a critical chain interaction involving the amino-terminal domains of the molecules.
II类主要组织相容性复合体编码(Ia)分子的细胞表面表达取决于组成性α链和β链缔合形成稳定的异二聚体。在小鼠中,已鉴定出两种II类分子同种型,AβAα和EβEα。然而,本实验室的实验表明,在DNA介导的基因转移至鼠L细胞后,AβEα混合同种型分子能够组装并在细胞表面表达。在本研究中,我们研究了β链的结构特征,这些特征控制AβEα同种异型对的缔合程度和膜表达水平。使用完整的等位基因Aβ基因表明,只有Aβd链,而不是Aβb或Aβk链,能够与Eα链在表面膜上共表达。转染编码来自一个等位基因的全部或一半β1结构域以及来自另一个等位基因的其余链的重组Aβ基因表明,Aβ链氨基末端50个残基中的5 - 7个多态性残基完全控制了与Eα共表达时的这种表达变化。编码Aβd或Aβk链的Aβ1结构域以及Eβ链的β2、跨膜和胞质部分的同种型混合β基因用于评估同种型保守结构在αβ配对和表达中的作用。与伴随氨基末端多态性残基变化的表达主要改变形成鲜明对比的是,这些羧基末端同种型片段的交换对与Aα或Eα链共表达的效率没有可检测到的影响。这些结果有力地表明,不同的Iaαβ二聚体组装并转运至膜的效率差异几乎完全由涉及分子氨基末端结构域的关键链相互作用决定。