Suppr超能文献

基于脑影像的脑龄差值估计。

Estimation of brain age delta from brain imaging.

机构信息

Wellcome Trust Centre for Integrative Neuroimaging (WIN-FMRIB), University of Oxford, Oxford, UK.

Wellcome Trust Centre for Integrative Neuroimaging (WIN-OHBA), University of Oxford, Oxford, UK.

出版信息

Neuroimage. 2019 Oct 15;200:528-539. doi: 10.1016/j.neuroimage.2019.06.017. Epub 2019 Jun 12.

Abstract

It is of increasing interest to study "brain age" - the apparent age of a subject, as inferred from brain imaging data. The difference between brain age and actual age (the "delta") is typically computed, reflecting deviation from the population norm. This therefore may reflect accelerated aging (positive delta) or resilience (negative delta) and has been found to be a useful correlate with factors such as disease and cognitive decline. However, although there has been a range of methods proposed for estimating brain age, there has been little study of the optimal ways of computing the delta. In this technical note we describe problems with the most common current approach, and present potential improvements. We evaluate different estimation methods on simulated and real data. We also find the strongest correlations of corrected brain age delta with 5,792 non-imaging variables (non-brain physical measures, life-factor measures, cognitive test scores, etc.), and also with 2,641 multimodal brain imaging-derived phenotypes, with data from 19,000 participants in UK Biobank.

摘要

研究“大脑年龄”(根据脑成像数据推断出的被试的表观年龄)越来越受到关注。大脑年龄与实际年龄(“差值”)之间的差异通常是通过计算得出的,反映了与人群平均值的偏差。因此,这可能反映了加速衰老(正差值)或复原力(负差值),并且已经被发现与疾病和认知能力下降等因素具有一定的相关性。然而,尽管已经提出了多种估计大脑年龄的方法,但对于计算差值的最佳方法的研究却很少。在本技术说明中,我们描述了最常用的当前方法存在的问题,并提出了潜在的改进方法。我们在模拟数据和真实数据上评估了不同的估计方法。我们还发现,校正后的大脑年龄差值与 5792 个非影像变量(非大脑生理测量、生活因素测量、认知测试分数等)以及 2641 个多模态脑影像衍生表型的相关性最强,这些数据来自英国生物库的 19000 名参与者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe9/6711452/d4cc18868852/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验