Suppr超能文献

验证性因子分析(CFA)、探索性结构方程建模(ESEM)和集束-探索性结构方程建模(Set-ESEM):拟合优度与简约性之间的最佳平衡。

Confirmatory Factor Analysis (CFA), Exploratory Structural Equation Modeling (ESEM), and Set-ESEM: Optimal Balance Between Goodness of Fit and Parsimony.

机构信息

Institute of Positive Psychology and Education, ‎Australian Catholic University, Sydney, Australia.

出版信息

Multivariate Behav Res. 2020 Jan-Feb;55(1):102-119. doi: 10.1080/00273171.2019.1602503. Epub 2019 Jun 17.

Abstract

CFAs of multidimensional constructs often fail to meet standards of good measurement (e.g., goodness-of-fit, measurement invariance, and well-differentiated factors). Exploratory structural equation modeling (ESEM) represents a compromise between exploratory factor analysis' (EFA) flexibility, and CFA/SEM's rigor and parsimony, but lacks parsimony (particularly in large models) and might confound constructs that need to be kept separate. In Set-ESEM, two or more a priori sets of constructs are modeled within a single model such that cross-loadings are permissible within the same set of factors (as in Full-ESEM) but are constrained to be zero for factors in different sets (as in CFA). The different sets can reflect the same set of constructs on multiple occasions, and/or different constructs measured within the same wave. Hence, Set-ESEM that represents a middle-ground between the flexibility of traditional-ESEM (hereafter referred to as Full-ESEM) and the rigor and parsimony of CFA/SEM. Thus, the purposes of this article are to provide an overview tutorial on Set-ESEM, juxtapose it with Full-ESEM, and to illustrate its application with simulated data and diverse "real" data applications with accessible, heuristic explanations of best practice.

摘要

多维结构的 CFA 常常不符合良好测量的标准(例如,拟合优度、测量不变性和区分良好的因子)。探索性结构方程建模 (ESEM) 代表了探索性因子分析 (EFA) 的灵活性与 CFA/SEM 的严格性和简约性之间的妥协,但缺乏简约性(尤其是在大型模型中),并且可能混淆需要分开的结构。在集 ESEM 中,两个或更多个先验结构集在单个模型中建模,使得同一组因子内允许交叉负荷(如全 ESEM 中那样),但不同集合的因子的交叉负荷被约束为零(如 CFA 中那样)。不同的集合可以反映同一组结构在多个场合,和/或在同一波中测量的不同结构。因此,集 ESEM 代表了传统 ESEM 的灵活性(以下简称全 ESEM)与 CFA/SEM 的严格性和简约性之间的中间立场。因此,本文的目的是提供集 ESEM 的概述教程,将其与全 ESEM 并列,并通过模拟数据和各种“真实”数据应用程序来说明其应用,同时提供易于理解的最佳实践解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验