Suppr超能文献

通过探索性结构方程模型检验大五人格量表的因素结构及性别间测量不变性

Testing the Factor Structure and Measurement Invariance Across Gender of the Big Five Inventory Through Exploratory Structural Equation Modeling.

作者信息

Chiorri Carlo, Marsh Herbert W, Ubbiali Alessandro, Donati Deborah

机构信息

a Department of Educational Sciences , Psychology Unit, University of Genova , Italy.

b Psyche-Dendron Association , Milan , Italy.

出版信息

J Pers Assess. 2016;98(1):88-99. doi: 10.1080/00223891.2015.1035381. Epub 2015 May 1.

Abstract

Confirmatory factor analyses (CFAs) typically fail to support the a priori 5-factor structure of Big Five self-report instruments, due in part to the overly restrictive CFA assumptions. We show that exploratory structural equation modeling (ESEM), an integration of CFA and exploratory factor analysis, overcomes these problems in relation to responses to the 44-item Big Five Inventory (BFI) administered to a large Italian community sample. ESEM fitted the data better and resulted in less correlated factors than CFA, although ESEM and CFA factor scores correlated at near unity with observed raw scores. Tests of gender invariance with a 13-model taxonomy of full measurement invariance showed that the factor structure of the BFI is gender-invariant and that women score higher on Neuroticism, Agreeableness, Extraversion, and Conscientiousness. Through ESEM one could address substantively important issues about BFI psychometric properties that could not be appropriately addressed through traditional approaches.

摘要

验证性因素分析(CFAs)通常无法支持大五人格自陈式量表的先验五因素结构,部分原因在于CFAs的假设过于严格。我们发现,探索性结构方程建模(ESEM),即CFA与探索性因素分析的结合,克服了这些问题,该模型基于对意大利一个大型社区样本进行的44项大五人格量表(BFI)的回答。ESEM对数据的拟合效果更好,且与CFA相比,其因素之间的相关性更低,尽管ESEM和CFA的因素得分与观察到的原始得分几乎完全相关。通过对13种全测量不变性模型分类进行性别不变性检验,结果表明BFI的因素结构具有性别不变性,且女性在神经质、宜人性、外向性和尽责性方面得分更高。通过ESEM,可以解决一些关于BFI心理测量特性的实质性重要问题,而这些问题无法通过传统方法得到妥善解决。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验