MSSMat, CentraleSupélec, Université Paris Saclay, CNRS, 3 rue Joliot-Curie, 91190 Gif-sur-Yvette, France.
2Present Address: Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA.
Tissue Eng Regen Med. 2019 Mar 21;16(3):225-235. doi: 10.1007/s13770-019-00181-3. eCollection 2019 Jun.
Tissue engineering represents a promising approach for the production of bone substitutes. The use of perfusion bioreactors for the culture of bone-forming cells on a three-dimensional porous scaffold resolves mass transport limitations and provides mechanical stimuli. Despite the recent and important development of bioreactors for tissue engineering, the underlying mechanisms leading to the production of bone substitutes remain poorly understood.
In order to study cell proliferation in a perfusion bioreactor, we propose a simplified experimental set-up using an impermeable scaffold model made of 2 mm diameter glass beads on which mechanosensitive cells, NIH-3T3 fibroblasts are cultured for up to 3 weeks under 10 mL/min culture medium flow. A methodology combining histological procedure, image analysis and analytical calculations allows the description and quantification of cell proliferation and tissue production in relation to the mean wall shear stress within the bioreactor.
Results show a massive expansion of the cell phase after 3 weeks in bioreactor compared to static control. A scenario of cell proliferation within the three-dimensional bioreactor porosity over the 3 weeks of culture is proposed pointing out the essential role of the contact points between adjacent beads. Calculations indicate that the mean wall shear stress experienced by the cells changes with culture time, from about 50 mPa at the beginning of the experiment to about 100 mPa after 3 weeks.
We anticipate that our results will help the development and calibration of predictive models, which rely on estimates and morphological description of cell proliferation under shear stress.
组织工程代表了一种生产骨替代物的很有前途的方法。使用灌注生物反应器在三维多孔支架上培养成骨细胞,可以解决质量传递限制并提供机械刺激。尽管最近在组织工程生物反应器方面取得了重要进展,但导致产生骨替代物的潜在机制仍了解甚少。
为了研究灌注生物反应器中的细胞增殖,我们提出了一种使用不可渗透支架模型的简化实验设置,该模型由 2 毫米直径的玻璃珠组成,在 10 毫升/分钟的培养液流量下,机械敏感细胞 NIH-3T3 成纤维细胞在其中培养长达 3 周。结合组织学程序、图像分析和分析计算的方法允许描述和量化细胞增殖和组织生成与生物反应器内的平均壁面剪切应力之间的关系。
结果显示,与静态对照相比,生物反应器中细胞相在 3 周后大量扩张。提出了一种在三维生物反应器孔隙内的细胞增殖场景,这 3 周的培养过程中,突出了相邻珠子之间接触点的重要作用。计算表明,细胞经历的平均壁面剪切应力随培养时间而变化,从实验开始时的约 50 mPa 增加到 3 周后的约 100 mPa。
我们预计,我们的结果将有助于预测模型的开发和校准,这些模型依赖于剪切应力下细胞增殖的估计和形态描述。