Suppr超能文献

组织学方法研究生物反应器中切应力对细胞增殖和组织形态的影响。

Histological Method to Study the Effect of Shear Stress on Cell Proliferation and Tissue Morphology in a Bioreactor.

机构信息

MSSMat, CentraleSupélec, Université Paris Saclay, CNRS, 3 rue Joliot-Curie, 91190 Gif-sur-Yvette, France.

2Present Address: Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA.

出版信息

Tissue Eng Regen Med. 2019 Mar 21;16(3):225-235. doi: 10.1007/s13770-019-00181-3. eCollection 2019 Jun.

Abstract

BACKGROUND

Tissue engineering represents a promising approach for the production of bone substitutes. The use of perfusion bioreactors for the culture of bone-forming cells on a three-dimensional porous scaffold resolves mass transport limitations and provides mechanical stimuli. Despite the recent and important development of bioreactors for tissue engineering, the underlying mechanisms leading to the production of bone substitutes remain poorly understood.

METHODS

In order to study cell proliferation in a perfusion bioreactor, we propose a simplified experimental set-up using an impermeable scaffold model made of 2 mm diameter glass beads on which mechanosensitive cells, NIH-3T3 fibroblasts are cultured for up to 3 weeks under 10 mL/min culture medium flow. A methodology combining histological procedure, image analysis and analytical calculations allows the description and quantification of cell proliferation and tissue production in relation to the mean wall shear stress within the bioreactor.

RESULTS

Results show a massive expansion of the cell phase after 3 weeks in bioreactor compared to static control. A scenario of cell proliferation within the three-dimensional bioreactor porosity over the 3 weeks of culture is proposed pointing out the essential role of the contact points between adjacent beads. Calculations indicate that the mean wall shear stress experienced by the cells changes with culture time, from about 50 mPa at the beginning of the experiment to about 100 mPa after 3 weeks.

CONCLUSION

We anticipate that our results will help the development and calibration of predictive models, which rely on estimates and morphological description of cell proliferation under shear stress.

摘要

背景

组织工程代表了一种生产骨替代物的很有前途的方法。使用灌注生物反应器在三维多孔支架上培养成骨细胞,可以解决质量传递限制并提供机械刺激。尽管最近在组织工程生物反应器方面取得了重要进展,但导致产生骨替代物的潜在机制仍了解甚少。

方法

为了研究灌注生物反应器中的细胞增殖,我们提出了一种使用不可渗透支架模型的简化实验设置,该模型由 2 毫米直径的玻璃珠组成,在 10 毫升/分钟的培养液流量下,机械敏感细胞 NIH-3T3 成纤维细胞在其中培养长达 3 周。结合组织学程序、图像分析和分析计算的方法允许描述和量化细胞增殖和组织生成与生物反应器内的平均壁面剪切应力之间的关系。

结果

结果显示,与静态对照相比,生物反应器中细胞相在 3 周后大量扩张。提出了一种在三维生物反应器孔隙内的细胞增殖场景,这 3 周的培养过程中,突出了相邻珠子之间接触点的重要作用。计算表明,细胞经历的平均壁面剪切应力随培养时间而变化,从实验开始时的约 50 mPa 增加到 3 周后的约 100 mPa。

结论

我们预计,我们的结果将有助于预测模型的开发和校准,这些模型依赖于剪切应力下细胞增殖的估计和形态描述。

相似文献

1
Histological Method to Study the Effect of Shear Stress on Cell Proliferation and Tissue Morphology in a Bioreactor.
Tissue Eng Regen Med. 2019 Mar 21;16(3):225-235. doi: 10.1007/s13770-019-00181-3. eCollection 2019 Jun.
2
Channeling Effect and Tissue Morphology in a Perfusion Bioreactor Imaged by X-Ray Microtomography.
Tissue Eng Regen Med. 2020 Jun;17(3):301-311. doi: 10.1007/s13770-020-00246-8. Epub 2020 Apr 20.
4
Flow rates in perfusion bioreactors to maximise mineralisation in bone tissue engineering in vitro.
J Biomech. 2018 Oct 5;79:232-237. doi: 10.1016/j.jbiomech.2018.08.004. Epub 2018 Aug 13.
5
Encapsulated explant in novel low shear perfusion bioreactor improve cell isolation, expansion and colony forming unit.
Cell Tissue Bank. 2019 Mar;20(1):25-34. doi: 10.1007/s10561-019-09749-8. Epub 2019 Jan 23.
8
Numerical optimization of cell colonization modelling inside scaffold for perfusion bioreactor: A multiscale model.
Med Eng Phys. 2018 Jul;57:40-50. doi: 10.1016/j.medengphy.2018.04.012. Epub 2018 May 10.

引用本文的文献

1
Mechanical and Computational Fluid Dynamic Models for Magnesium-Based Implants.
Materials (Basel). 2024 Feb 8;17(4):830. doi: 10.3390/ma17040830.
7
Vibration enhanced cell growth induced by surface acoustic waves as in vitro wound-healing model.
Proc Natl Acad Sci U S A. 2020 Dec 15;117(50):31603-31613. doi: 10.1073/pnas.2005203117. Epub 2020 Nov 30.
8
Channeling Effect and Tissue Morphology in a Perfusion Bioreactor Imaged by X-Ray Microtomography.
Tissue Eng Regen Med. 2020 Jun;17(3):301-311. doi: 10.1007/s13770-020-00246-8. Epub 2020 Apr 20.

本文引用的文献

1
In silico study of bone tissue regeneration in an idealised porous hydrogel scaffold using a mechano-regulation algorithm.
Biomech Model Mechanobiol. 2018 Feb;17(1):5-18. doi: 10.1007/s10237-017-0941-3. Epub 2017 Aug 4.
2
Bone Cell Models: Impact of Fluid Shear Stress on Bone Formation.
Front Bioeng Biotechnol. 2016 Nov 15;4:87. doi: 10.3389/fbioe.2016.00087. eCollection 2016.
3
Cellular forces and matrix assembly coordinate fibrous tissue repair.
Nat Commun. 2016 Mar 16;7:11036. doi: 10.1038/ncomms11036.
4
Quantification of fluid shear stress in bone tissue engineering scaffolds with spherical and cubical pore architectures.
Biomech Model Mechanobiol. 2016 Jun;15(3):561-77. doi: 10.1007/s10237-015-0710-0. Epub 2015 Jul 30.
5
Numerical Study of Granular Scaffold Efficiency to Convert Fluid Flow into Mechanical Stimulation in Bone Tissue Engineering.
Tissue Eng Part C Methods. 2015 Sep;21(9):863-71. doi: 10.1089/ten.TEC.2014.0648. Epub 2015 Apr 6.
6
Primary cilia respond to fluid shear stress and mediate flow-induced calcium deposition in osteoblasts.
FASEB J. 2014 Jan;28(1):430-9. doi: 10.1096/fj.13-231894. Epub 2013 Oct 4.
7
3D tissue-engineered construct analysis via conventional high-resolution microcomputed tomography without X-ray contrast.
Tissue Eng Part C Methods. 2013 May;19(5):327-35. doi: 10.1089/ten.TEC.2011.0612. Epub 2012 Nov 8.
8
NIH Image to ImageJ: 25 years of image analysis.
Nat Methods. 2012 Jul;9(7):671-5. doi: 10.1038/nmeth.2089.
9
The mechanics of the primary cilium: an intricate structure with complex function.
J Biomech. 2012 Jan 3;45(1):17-26. doi: 10.1016/j.jbiomech.2011.08.008. Epub 2011 Sep 6.
10
Response of osteoblasts to low fluid shear stress is time dependent.
Tissue Cell. 2011 Oct;43(5):311-7. doi: 10.1016/j.tice.2011.06.003. Epub 2011 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验