Suppr超能文献

开发和评估一种可计算的表型,以利用电子健康记录数据识别接受化疗治疗的小儿白血病和淋巴瘤患者。

Development and evaluation of a computable phenotype to identify pediatric patients with leukemia and lymphoma treated with chemotherapy using electronic health record data.

机构信息

Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.

Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.

出版信息

Pediatr Blood Cancer. 2019 Sep;66(9):e27876. doi: 10.1002/pbc.27876. Epub 2019 Jun 17.

Abstract

BACKGROUND

Widespread implementation of electronic health records (EHR) has created new opportunities for pediatric oncology observational research. Little attention has been given to using EHR data to identify patients with pediatric hematologic malignancies.

METHODS

This study used EHR-derived data in a pediatric clinical data research network, PEDSnet, to develop and evaluate a computable phenotype algorithm to identify pediatric patients with leukemia and lymphoma who received treatment with chemotherapy. To guide early development, multiple computable phenotype-defined cohorts were compared to one institution's tumor registry. The most promising algorithm was chosen for formal evaluation and consisted of at least two leukemia/lymphoma diagnoses (Systematized Nomenclature of Medicine codes) within a 90-day period, two chemotherapy exposures, and three hematology-oncology provider encounters. During evaluation, the computable phenotype was executed against EHR data from 2011 to 2016 at three large institutions. Classification accuracy was assessed by masked medical record review with phenotype-identified patients compared to a control group with at least three hematology-oncology encounters.

RESULTS

The computable phenotype had sensitivity of 100% (confidence interval [CI] 99%, 100%), specificity of 99% (CI 99%, 100%), positive predictive value (PPV) and negative predictive value (NPV) of 100%, and C-statistic of 1 at the development institution. The computable phenotype performance was similar at the two test institutions with sensitivity of 100% (CI 99%, 100%), specificity of 99% (CI 99%, 100%), PPV of 96%, NPV of 100%, and C-statistic of 0.99.

CONCLUSION

The EHR-based computable phenotype is an accurate cohort identification tool for pediatric patients with leukemia and lymphoma who have been treated with chemotherapy and is ready for use in clinical studies.

摘要

背景

电子健康记录(EHR)的广泛应用为儿科肿瘤观察性研究创造了新的机会。但是,利用 EHR 数据来识别患有儿科血液恶性肿瘤的患者却很少受到关注。

方法

本研究使用儿科临床数据研究网络 PEDSnet 中的 EHR 衍生数据,开发并评估了一种可计算的表型算法,以识别接受化疗治疗的儿科白血病和淋巴瘤患者。为了指导早期开发,将多个可计算的表型定义队列与一个机构的肿瘤登记处进行了比较。选择最有前途的算法进行正式评估,该算法包括在 90 天内至少两次白血病/淋巴瘤诊断(医学系统命名法代码)、两次化疗暴露和三次血液肿瘤学提供者就诊。在评估过程中,针对来自三个大型机构的 2011 年至 2016 年的 EHR 数据执行了可计算的表型。通过将表型识别的患者与至少有三次血液肿瘤学就诊的对照组进行盲法病历审查,评估分类准确性。

结果

在开发机构中,该可计算的表型具有 100%(置信区间 [CI] 99%,100%)的敏感性、99%(CI 99%,100%)的特异性、100%的阳性预测值(PPV)和阴性预测值(NPV)以及 1 的 C 统计量。在两个测试机构中,该可计算的表型性能相似,敏感性为 100%(CI 99%,100%)、特异性为 99%(CI 99%,100%)、PPV 为 96%、NPV 为 100%和 C 统计量为 0.99。

结论

基于 EHR 的可计算表型是一种针对接受化疗治疗的儿科白血病和淋巴瘤患者的准确队列识别工具,可用于临床研究。

相似文献

2
Using Electronic Health Record Data to Rapidly Identify Children with Glomerular Disease for Clinical Research.
J Am Soc Nephrol. 2019 Dec;30(12):2427-2435. doi: 10.1681/ASN.2019040365. Epub 2019 Nov 15.
4
A Computable Phenotype Improves Cohort Ascertainment in a Pediatric Pulmonary Hypertension Registry.
J Pediatr. 2017 Sep;188:224-231.e5. doi: 10.1016/j.jpeds.2017.05.037. Epub 2017 Jun 16.
5
Development and Evaluation of Computable Phenotypes in Pediatric Epilepsy:3 Cases.
J Child Neurol. 2021 Oct;36(11):990-997. doi: 10.1177/08830738211019578. Epub 2021 Jul 28.
6
Optimizing research in symptomatic uterine fibroids with development of a computable phenotype for use with electronic health records.
Am J Obstet Gynecol. 2018 Jun;218(6):610.e1-610.e7. doi: 10.1016/j.ajog.2018.02.002. Epub 2018 Feb 9.
9
Identification and Validation of a Sickle Cell Disease Cohort Within Electronic Health Records.
Acad Pediatr. 2017 Apr;17(3):283-287. doi: 10.1016/j.acap.2016.12.005. Epub 2016 Dec 13.

引用本文的文献

1
Automated Electronic Health Record Data Extraction and Curation Using ExtractEHR.
JCO Clin Cancer Inform. 2024 Nov;8:e2400100. doi: 10.1200/CCI.24.00100. Epub 2024 Nov 25.
5
Electronic health records identify timely trends in childhood mental health conditions.
Child Adolesc Psychiatry Ment Health. 2023 Sep 14;17(1):107. doi: 10.1186/s13034-023-00650-7.
9
Implementation science in pediatric oncology: A narrative review and future directions.
Pediatr Blood Cancer. 2022 Apr;69(4):e29579. doi: 10.1002/pbc.29579. Epub 2022 Jan 19.
10
Positive predictive value and sensitivity of ICD-9-CM codes for identifying pediatric leukemia.
Pediatr Blood Cancer. 2022 Feb;69(2):e29383. doi: 10.1002/pbc.29383. Epub 2021 Nov 13.

本文引用的文献

2
A Comparison of Data Quality Assessment Checks in Six Data Sharing Networks.
EGEMS (Wash DC). 2017 Jun 12;5(1):8. doi: 10.5334/egems.223.
3
Creation of a pediatric mature B-cell non-Hodgkin lymphoma cohort within the Pediatric Health Information System Database.
PLoS One. 2017 Oct 23;12(10):e0186960. doi: 10.1371/journal.pone.0186960. eCollection 2017.
4
An information model for computable cancer phenotypes.
BMC Med Inform Decis Mak. 2016 Sep 15;16(1):121. doi: 10.1186/s12911-016-0358-4.
6
Building Data Infrastructure to Evaluate and Improve Quality: PCORnet.
J Oncol Pract. 2015 May;11(3):204-6. doi: 10.1200/JOP.2014.003194.
7
Feasibility and utility of applications of the common data model to multiple, disparate observational health databases.
J Am Med Inform Assoc. 2015 May;22(3):553-64. doi: 10.1093/jamia/ocu023. Epub 2015 Feb 10.
8
Cancer incidence rates and trends among children and adolescents in the United States, 2001-2009.
Pediatrics. 2014 Oct;134(4):e945-55. doi: 10.1542/peds.2013-3926. Epub 2014 Sep 8.
9
PEDSnet: a National Pediatric Learning Health System.
J Am Med Inform Assoc. 2014 Jul-Aug;21(4):602-6. doi: 10.1136/amiajnl-2014-002743. Epub 2014 May 12.
10
Establishing a high-risk neuroblastoma cohort using the Pediatric Health Information System Database.
Pediatr Blood Cancer. 2014 Jun;61(6):1129-1131. doi: 10.1002/pbc.24930. Epub 2014 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验