Suppr超能文献

利用多机构儿科学习健康系统识别系统性红斑狼疮和狼疮性肾炎:计算表型的开发和验证。

Using a Multi-Institutional Pediatric Learning Health System to Identify Systemic Lupus Erythematosus and Lupus Nephritis: Development and Validation of Computable Phenotypes.

机构信息

Pediatric Nephrology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas.

Pediatric Rheumatology, Perelman School of Medicine at the University of Pennsylvania, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.

出版信息

Clin J Am Soc Nephrol. 2022 Jan;17(1):65-74. doi: 10.2215/CJN.07810621. Epub 2021 Nov 3.

Abstract

BACKGROUND AND OBJECTIVES

Performing adequately powered clinical trials in pediatric diseases, such as SLE, is challenging. Improved recruitment strategies are needed for identifying patients.

DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Electronic health record algorithms were developed and tested to identify children with SLE both with and without lupus nephritis. We used single-center electronic health record data to develop computable phenotypes composed of diagnosis, medication, procedure, and utilization codes. These were evaluated iteratively against a manually assembled database of patients with SLE. The highest-performing phenotypes were then evaluated across institutions in PEDSnet, a national health care systems network of >6.7 million children. Reviewers blinded to case status used standardized forms to review random samples of cases (=350) and noncases (=350).

RESULTS

Final algorithms consisted of both utilization and diagnostic criteria. For both, utilization criteria included two or more in-person visits with nephrology or rheumatology and ≥60 days follow-up. SLE diagnostic criteria included absence of neonatal lupus, one or more hydroxychloroquine exposures, and either three or more qualifying diagnosis codes separated by ≥30 days or one or more diagnosis codes and one or more kidney biopsy procedure codes. Sensitivity was 100% (95% confidence interval [95% CI], 99 to 100), specificity was 92% (95% CI, 88 to 94), positive predictive value was 91% (95% CI, 87 to 94), and negative predictive value was 100% (95% CI, 99 to 100). Lupus nephritis diagnostic criteria included either three or more qualifying lupus nephritis diagnosis codes (or SLE codes on the same day as glomerular/kidney codes) separated by ≥30 days or one or more SLE diagnosis codes and one or more kidney biopsy procedure codes. Sensitivity was 90% (95% CI, 85 to 94), specificity was 93% (95% CI, 89 to 97), positive predictive value was 94% (95% CI, 89 to 97), and negative predictive value was 90% (95% CI, 84 to 94). Algorithms identified 1508 children with SLE at PEDSnet institutions (537 with lupus nephritis), 809 of whom were seen in the past 12 months.

CONCLUSIONS

Electronic health record-based algorithms for SLE and lupus nephritis demonstrated excellent classification accuracy across PEDSnet institutions.

摘要

背景与目的

在儿科疾病(如系统性红斑狼疮)中开展充分效能的临床试验颇具挑战。需要改进招募策略以识别患者。

设计、地点、参与者和测量方法:开发并测试了电子病历算法,以识别有或无狼疮肾炎的系统性红斑狼疮患儿。我们使用单中心电子病历数据,构建由诊断、用药、操作和利用代码组成的可计算表型。这些表型经过反复迭代,与手动组装的系统性红斑狼疮患者数据库进行了比较。然后,在全国儿童健康照护系统网络(PEDSnet)中的多个机构中评估表现最佳的表型,该网络包含超过 670 万儿童。对病例状态不知情的审核员使用标准化表格审核了病例(=350 例)和非病例(=350 例)的随机样本。

结果

最终的算法包含利用和诊断标准。对于两者而言,利用标准包括与肾病或风湿病学专家进行两次或更多次当面就诊,以及≥60 天的随访。系统性红斑狼疮的诊断标准包括无新生儿狼疮、羟氯喹的单次或多次暴露,以及≥30 天间隔的三个或更多个合格诊断代码,或一个或多个诊断代码和一个或多个肾脏活检操作代码。敏感性为 100%(95%置信区间[95%CI],99 至 100),特异性为 92%(95%CI,88 至 94),阳性预测值为 91%(95%CI,87 至 94),阴性预测值为 100%(95%CI,99 至 100)。狼疮肾炎的诊断标准包括≥30 天间隔的三个或更多个合格狼疮肾炎诊断代码(或肾小球/肾脏代码与狼疮代码同一天),或一个或多个狼疮诊断代码和一个或多个肾脏活检操作代码。敏感性为 90%(95%CI,85 至 94),特异性为 93%(95%CI,89 至 97),阳性预测值为 94%(95%CI,89 至 97),阴性预测值为 90%(95%CI,84 至 94)。基于电子病历的算法在 PEDSnet 机构中识别出了 1508 名系统性红斑狼疮患儿(537 名伴有狼疮肾炎),其中 809 名患儿在过去 12 个月内就诊过。

结论

基于电子病历的系统性红斑狼疮和狼疮肾炎算法在 PEDSnet 机构中表现出了优异的分类准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc08/8763148/0a6ca3b139a9/CJN.07810621absf1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验