Suppr超能文献

假肢神经控制策略:从电极连接到3D打印

Strategies for neural control of prosthetic limbs: from electrode interfacing to 3D printing.

作者信息

Ngan Catherine G Y, Kapsa Rob M I, Choong Peter F M

机构信息

Department of Surgery, The University of Melbourne, St Vincent's Hospital, Melbourne 3065, VIC, Australia.

Biofab3D@ACMD, St Vincent's Hospital Melbourne, Melbourne 3065, VIC, Australia.

出版信息

Materials (Basel). 2019 Jun 14;12(12):1927. doi: 10.3390/ma12121927.

Abstract

Limb amputation is a major cause of disability in our community, for which motorised prosthetic devices offer a return to function and independence. With the commercialisation and increasing availability of advanced motorised prosthetic technologies, there is a consumer need and clinical drive for intuitive user control. In this context, rapid additive fabrication/prototyping capacities and biofabrication protocols embrace a highly-personalised medicine doctrine that marries specific patient biology and anatomy to high-end prosthetic design, manufacture and functionality. Commercially-available prosthetic models utilise surface electrodes that are limited by their disconnect between mind and device. As such, alternative strategies of mind-prosthetic interfacing have been explored to purposefully drive the prosthetic limb. This review investigates mind to machine interfacing strategies, with a focus on the biological challenges of long-term harnessing of the user's cerebral commands to drive actuation/movement in electronic prostheses. It covers the limitations of skin, peripheral nerve and brain interfacing electrodes, and in particular the challenges of minimising the foreign-body response, as well as a new strategy of grafting muscle onto residual peripheral nerves. In conjunction, this review also investigates the applicability of additive tissue engineering at the nerve-electrode boundary, which has led to pioneering work in neural regeneration and bioelectrode development for applications at the neuroprosthetic interface.

摘要

肢体截肢是我们社区残疾的主要原因之一,电动假肢装置可帮助患者恢复功能并实现独立。随着先进电动假肢技术的商业化和日益普及,消费者对直观的用户控制有需求,临床也有这方面的推动。在这种背景下,快速增材制造/原型制作能力和生物制造方案体现了一种高度个性化医疗理念,即将特定患者的生物学和解剖结构与高端假肢的设计、制造及功能相结合。市售的假肢模型使用表面电极,但其受限于思维与装置之间的脱节。因此,人们探索了思维与假肢连接的替代策略,以有目的地驱动假肢肢体。本综述研究了思维与机器的连接策略,重点关注长期利用用户大脑指令来驱动电子假肢的致动/运动所面临的生物学挑战。它涵盖了皮肤、外周神经和大脑连接电极的局限性,特别是将异物反应降至最低的挑战,以及将肌肉移植到残余外周神经上的新策略。同时,本综述还研究了增材组织工程在神经电极边界的适用性,这已在神经再生和用于神经假体接口应用的生物电极开发方面取得了开创性工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ac7/6631966/c69ad4fc655b/materials-12-01927-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验