Suppr超能文献

定量人脑化学交换饱和转移成像中酰胺质子交换率和浓度。

Quantifying amide proton exchange rate and concentration in chemical exchange saturation transfer imaging of the human brain.

机构信息

Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.

Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.

出版信息

Neuroimage. 2019 Apr 1;189:202-213. doi: 10.1016/j.neuroimage.2019.01.034. Epub 2019 Jan 14.

Abstract

Current chemical exchange saturation transfer (CEST) neuroimaging protocols typically acquire CEST-weighted images, and, as such, do not essentially provide quantitative proton-specific exchange rates (or brain pH) and concentrations. We developed a dictionary-free MR fingerprinting (MRF) technique to allow CEST parameter quantification with a reduced data set. This was accomplished by subgrouping proton exchange models (SPEM), taking amide proton transfer (APT) as an example, into two-pool (water and semisolid macromolecules) and three-pool (water, semisolid macromolecules, and amide protons) models. A variable radiofrequency saturation scheme was used to generate unique signal evolutions for different tissues, reflecting their CEST parameters. The proposed MRF-SPEM method was validated using Bloch-McConnell equation-based digital phantoms with known ground-truth, which showed that MRF-SPEM can achieve a high degree of accuracy and precision for absolute CEST parameter quantification and CEST phantoms. For in-vivo studies at 3 T, using the same model as in the simulations, synthetic Z-spectra were generated using rates and concentrations estimated from the MRF-SPEM reconstruction and compared with experimentally measured Z-spectra as the standard for optimization. The MRF-SPEM technique can provide rapid and quantitative human brain CEST mapping.

摘要

目前的化学交换饱和传递(CEST)神经影像学方案通常采集 CEST 加权图像,因此不能从本质上提供定量的质子特异性交换率(或脑 pH 值)和浓度。我们开发了一种无字典的磁共振指纹图谱(MRF)技术,通过减少数据集来实现 CEST 参数的定量。这是通过分组质子交换模型(SPEM)来实现的,以酰胺质子转移(APT)为例,将其分为两池(水和半固态大分子)和三池(水、半固态大分子和酰胺质子)模型。采用可变射频饱和方案为不同组织生成独特的信号演化,反映其 CEST 参数。该方法使用基于 Bloch-McConnell 方程的数字体模进行了验证,这些体模具有已知的真实值,结果表明,MRF-SPEM 可以实现绝对 CEST 参数定量和 CEST 体模的高精度和高精确度。在 3T 的体内研究中,使用与模拟中相同的模型,使用从 MRF-SPEM 重建中估计的速率和浓度生成合成 Z 谱,并将其与实验测量的 Z 谱进行比较,作为优化的标准。MRF-SPEM 技术可以提供快速和定量的人脑 CEST 映射。

相似文献

1
Quantifying amide proton exchange rate and concentration in chemical exchange saturation transfer imaging of the human brain.
Neuroimage. 2019 Apr 1;189:202-213. doi: 10.1016/j.neuroimage.2019.01.034. Epub 2019 Jan 14.
2
Rapid and quantitative chemical exchange saturation transfer (CEST) imaging with magnetic resonance fingerprinting (MRF).
Magn Reson Med. 2018 Dec;80(6):2449-2463. doi: 10.1002/mrm.27221. Epub 2018 May 13.
3
A deep learning approach for magnetization transfer contrast MR fingerprinting and chemical exchange saturation transfer imaging.
Neuroimage. 2020 Nov 1;221:117165. doi: 10.1016/j.neuroimage.2020.117165. Epub 2020 Jul 15.
10
Establishing upper limits on neuronal activity-evoked pH changes with APT-CEST MRI at 7 T.
Magn Reson Med. 2018 Jul;80(1):126-136. doi: 10.1002/mrm.27013. Epub 2017 Nov 20.

引用本文的文献

1
Amide proton transfer imaging of Alzheimer's disease and Parkinson's disease.
Magn Reson Lett. 2022 Oct 28;3(1):22-30. doi: 10.1016/j.mrl.2022.10.002. eCollection 2023 Feb.
2
Imaging the uptake and metabolism of glutamine in prostate tumor models using CEST MRI.
Npj Imaging. 2025 Aug 1;3(1):34. doi: 10.1038/s44303-025-00100-3.
6
Quantitative molecular imaging using deep magnetic resonance fingerprinting.
Nat Protoc. 2025 Apr 1. doi: 10.1038/s41596-025-01152-w.
8
Extreme Heat Exposure is Associated with Lower Learning, General Cognitive Ability, and Memory among US Children.
Open J Neurosci. 2025;3(1):10-22. doi: 10.31586/ojn.2025.1277. Epub 2025 Jan 10.
9
Chemical exchange saturation transfer MRI for neurodegenerative diseases: An update on clinical and preclinical studies.
Neural Regen Res. 2026 Feb 1;21(2):553-568. doi: 10.4103/NRR.NRR-D-24-01246. Epub 2025 Jan 29.
10
Learning-based motion artifact correction in the Z-spectral domain for chemical exchange saturation transfer MRI.
Magn Reson Med. 2025 Jul;94(1):331-345. doi: 10.1002/mrm.30440. Epub 2025 Jan 20.

本文引用的文献

2
Chemical exchange saturation transfer fingerprinting for exchange rate quantification.
Magn Reson Med. 2018 Oct;80(4):1352-1363. doi: 10.1002/mrm.27363. Epub 2018 May 30.
3
Rapid and quantitative chemical exchange saturation transfer (CEST) imaging with magnetic resonance fingerprinting (MRF).
Magn Reson Med. 2018 Dec;80(6):2449-2463. doi: 10.1002/mrm.27221. Epub 2018 May 13.
5
P magnetic resonance fingerprinting for rapid quantification of creatine kinase reaction rate in vivo.
NMR Biomed. 2017 Dec;30(12). doi: 10.1002/nbm.3786. Epub 2017 Sep 15.
6
3D MR fingerprinting with accelerated stack-of-spirals and hybrid sliding-window and GRAPPA reconstruction.
Neuroimage. 2017 Nov 15;162:13-22. doi: 10.1016/j.neuroimage.2017.08.030. Epub 2017 Aug 24.
7
Fast 3D magnetic resonance fingerprinting for a whole-brain coverage.
Magn Reson Med. 2018 Apr;79(4):2190-2197. doi: 10.1002/mrm.26886. Epub 2017 Aug 22.
9
AIR-MRF: Accelerated iterative reconstruction for magnetic resonance fingerprinting.
Magn Reson Imaging. 2017 Sep;41:29-40. doi: 10.1016/j.mri.2017.07.007. Epub 2017 Jul 14.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验