Heuschkel Ingeborg, Hoschek Anna, Schmid Andreas, Bühler Bruno, Karande Rohan, Bühler Katja
Department of Solar Materials Helmholtz-Centre for Environmental Research, UFZ Permoserstrasse 15, 04318 Leipzig, Germany.
Data Brief. 2019 May 25;25:104059. doi: 10.1016/j.dib.2019.104059. eCollection 2019 Aug.
Photosynthetic microorganisms offer promising perspectives for the sustainable production of value-added compounds. Nevertheless, the cultivation of phototrophic organisms to high cell densities (HCDs) is hampered by limited reactor concepts. Co-cultivation of the photoautotrophic sp. PCC 6803 and the chemoheterotrophic VLB 120 enabled HCDs up to 51.8 g L. Respective biofilms have been grown as a biofilm in capillary flow-reactors, and oxygen evolution, total biomass, as well as the ratio of the two strains, have been followed under various cultivation conditions. Furthermore, biofilm formation on a microscopic level was analyzed via confocal laser scanning microscopy using a custom made flow-cell setup. The concept of mixed trophies co-cultivation was coupled to biotransformation, namely the oxyfunctionalization of cyclohexane to cyclohexanol. For benchmarking, the performance of the phototrophic reaction was compared to the chemical process, and to a biotechnological approach using a heterotrophic organism only. The data presented refer to our research paper "Mixed-species biofilms for high-cell-density application of Synechocystis sp. PCC 6803 in capillary reactors for continuous cyclohexane oxidation to cyclohexanol" Hoschek et al., 2019.
光合微生物为增值化合物的可持续生产提供了广阔前景。然而,光养生物的高密度培养受到有限的反应器概念的阻碍。光自养的集胞藻属PCC 6803和化能异养的VLB 120的共培养可实现高达51.8 g/L的高密度培养。各自的生物膜已在毛细管流动反应器中作为生物膜生长,并且在各种培养条件下跟踪了氧气释放、总生物量以及两种菌株的比例。此外,使用定制的流动池装置通过共聚焦激光扫描显微镜在微观层面分析生物膜的形成。混合营养共培养的概念与生物转化相结合,即环己烷氧化为环己醇的氧官能化反应。为了进行基准测试,将光养反应的性能与化学过程以及仅使用异养生物的生物技术方法进行了比较。所呈现的数据参考了我们的研究论文《用于集胞藻属PCC 6803在毛细管反应器中高密度应用以将环己烷连续氧化为环己醇的混合物种生物膜》,霍舍克等人,2019年。