Suppr超能文献

大气压力等离子体通过激活分子伴侣 Hsp33 来保护蛋白质免于聚集。

The molecular chaperone Hsp33 is activated by atmospheric-pressure plasma protecting proteins from aggregation.

机构信息

1 Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum , Bochum , Germany.

4 Molecular, Cellular, and Developmental Biology, University of Michigan , Ann Arbor, MI , USA.

出版信息

J R Soc Interface. 2019 Jun 28;16(155):20180966. doi: 10.1098/rsif.2018.0966. Epub 2019 Jun 19.

Abstract

Non-equilibrium atmospheric-pressure plasmas are an alternative means to sterilize and disinfect. Plasma-mediated protein aggregation has been identified as one of the mechanisms responsible for the antibacterial features of plasma. Heat shock protein 33 (Hsp33) is a chaperone with holdase function that is activated when oxidative stress and unfolding conditions coincide. In its active form, it binds unfolded proteins and prevents their aggregation. Here we analyse the influence of plasma on the structure and function of Hsp33 of Escherichia coli using a dielectric barrier discharge plasma. While most other proteins studied so far were rapidly inactivated by atmospheric-pressure plasma, exposure to plasma activated Hsp33. Both, oxidation of cysteine residues and partial unfolding of Hsp33 were observed after plasma treatment. Plasma-mediated activation of Hsp33 was reversible by reducing agents, indicating that cysteine residues critical for regulation of Hsp33 activity were not irreversibly oxidized. However, the reduction yielded a protein that did not regain its original fold. Nevertheless, a second round of plasma treatment resulted again in a fully active protein that was unfolded to an even higher degree. These conformational states were not previously observed after chemical activation with HOCl. Thus, although we could detect the formation of HOCl in the liquid phase during plasma treatment, we conclude that other species must be involved in plasma activation of Hsp33. E. coli cells over-expressing the Hsp33-encoding gene hslO from a plasmid showed increased survival rates when treated with plasma while an hslO deletion mutant was hypersensitive emphasizing the importance of protein aggregation as an inactivation mechanism of plasma.

摘要

非平衡大气压等离子体是一种替代的灭菌和消毒方法。等离子体介导的蛋白质聚集已被确定为等离子体具有抗菌特性的机制之一。热休克蛋白 33(Hsp33)是一种伴侣蛋白,具有持留酶功能,当氧化应激和展开条件同时发生时,它会被激活。在其活性形式下,它结合未折叠的蛋白质并防止其聚集。在这里,我们使用介质阻挡放电等离子体分析等离子体对大肠杆菌 Hsp33 结构和功能的影响。虽然迄今为止研究的大多数其他蛋白质都被大气压等离子体迅速失活,但暴露于等离子体激活的 Hsp33 中则不然。在等离子体处理后,观察到半胱氨酸残基的氧化和 Hsp33 的部分展开。用还原剂处理可使 Hsp33 的等离子体介导的激活可逆,表明对于 Hsp33 活性调节至关重要的半胱氨酸残基没有被不可逆地氧化。但是,还原产物的蛋白质没有恢复其原始折叠。尽管如此,第二轮等离子体处理再次导致完全展开的蛋白质,其折叠程度更高。这些构象状态在化学激活物 HOCl 后以前没有观察到。因此,尽管我们可以在等离子体处理过程中检测到液相中 HOCl 的形成,但我们得出结论,其他物质必须参与 Hsp33 的等离子体激活。用质粒过表达 hslO 基因编码的 Hsp33 的大肠杆菌细胞在等离子体处理时显示出更高的存活率,而 hslO 缺失突变体则表现出超敏性,这强调了蛋白质聚集作为等离子体失活机制的重要性。

相似文献

1
The molecular chaperone Hsp33 is activated by atmospheric-pressure plasma protecting proteins from aggregation.
J R Soc Interface. 2019 Jun 28;16(155):20180966. doi: 10.1098/rsif.2018.0966. Epub 2019 Jun 19.
2
3
Crystal structure of constitutively monomeric E. coli Hsp33 mutant with chaperone activity.
FEBS Lett. 2011 Feb 18;585(4):664-70. doi: 10.1016/j.febslet.2011.01.029. Epub 2011 Jan 23.
4
Unique Unfoldase/Aggregase Activity of a Molecular Chaperone Hsp33 in its Holding-Inactive State.
J Mol Biol. 2019 Mar 29;431(7):1468-1480. doi: 10.1016/j.jmb.2019.02.022. Epub 2019 Feb 27.
5
Activation of the redox-regulated chaperone Hsp33 by domain unfolding.
J Biol Chem. 2004 May 7;279(19):20529-38. doi: 10.1074/jbc.M401764200. Epub 2004 Mar 15.
7
Redox-regulated chaperone function and conformational changes of Escherichia coli Hsp33.
FEBS Lett. 2001 Jan 26;489(1):19-24. doi: 10.1016/s0014-5793(01)02074-9.

引用本文的文献

2
Myeloperoxidase as a therapeutic target for oxidative damage in Alzheimer's disease.
J Enzyme Inhib Med Chem. 2025 Dec;40(1):2456282. doi: 10.1080/14756366.2025.2456282. Epub 2025 Feb 14.
3
Multi-Oxidant Environment as a Suicidal Inhibitor of Myeloperoxidase.
Antioxidants (Basel). 2023 Oct 30;12(11):1936. doi: 10.3390/antiox12111936.
4
5
Medical gas plasma technology: Roadmap on cancer treatment and immunotherapy.
Redox Biol. 2023 Sep;65:102798. doi: 10.1016/j.redox.2023.102798. Epub 2023 Jun 27.
6
Mechanisms of bacterial inhibition and tolerance around cold atmospheric plasma.
Appl Microbiol Biotechnol. 2023 Sep;107(17):5301-5316. doi: 10.1007/s00253-023-12618-w. Epub 2023 Jul 8.
7
Cold Atmospheric Plasma Triggers Apoptosis via the Unfolded Protein Response in Melanoma Cells.
Cancers (Basel). 2023 Feb 7;15(4):1064. doi: 10.3390/cancers15041064.
8
Adhesion Properties of Dad-13 and Mut-7 on Sprague Dawley Rat Intestine.
Microorganisms. 2021 Nov 11;9(11):2336. doi: 10.3390/microorganisms9112336.
10
ROS Cocktails as an Adjuvant for Personalized Antitumor Vaccination?
Vaccines (Basel). 2021 May 19;9(5):527. doi: 10.3390/vaccines9050527.

本文引用的文献

1
Near diffusion-controlled reaction of a Zn(Cys) zinc finger with hypochlorous acid.
Chem Sci. 2016 Aug 1;7(8):5508-5516. doi: 10.1039/c6sc00974c. Epub 2016 May 26.
3
Cold atmospheric pressure plasma causes protein denaturation and endoplasmic reticulum stress in Saccharomyces cerevisiae.
Appl Microbiol Biotechnol. 2018 Mar;102(5):2279-2288. doi: 10.1007/s00253-018-8758-2. Epub 2018 Jan 22.
4
Stability of Weakly Acidic Hypochlorous Acid Solution with Microbicidal Activity.
Biocontrol Sci. 2017;22(4):223-227. doi: 10.4265/bio.22.223.
5
Elucidation of Plasma-induced Chemical Modifications on Glutathione and Glutathione Disulphide.
Sci Rep. 2017 Oct 23;7(1):13828. doi: 10.1038/s41598-017-13041-8.
8
Involvement of multiple stressors induced by non-thermal plasma-charged aerosols during inactivation of airborne bacteria.
PLoS One. 2017 Feb 6;12(2):e0171434. doi: 10.1371/journal.pone.0171434. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验