文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

代谢依赖性是肠道微生物群在肠道发病机制中相互作用模式的基础。

Metabolic Dependencies Underlie Interaction Patterns of Gut Microbiota During Enteropathogenesis.

作者信息

Dai Die, Wang Teng, Wu Sicheng, Gao Na L, Chen Wei-Hua

机构信息

Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.

College of Life Science, Henan Normal University, Xinxiang, China.

出版信息

Front Microbiol. 2019 Jun 4;10:1205. doi: 10.3389/fmicb.2019.01205. eCollection 2019.


DOI:10.3389/fmicb.2019.01205
PMID:31214144
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6558107/
Abstract

In recent decades, increasing evidence has strongly suggested that gut microbiota play an important role in many intestinal diseases including inflammatory bowel disease (IBD) and colorectal cancer (CRC). The composition of gut microbiota is thought to be largely shaped by interspecies competition for available resources and also by cooperative interactions. However, to what extent the changes could be attributed to external factors such as diet of choice and internal factors including mutual relationships among gut microbiota, respectively, are yet to be elucidated. Due to the advances of high-throughput sequencing technologies, flood of (meta)-genome sequence information and high-throughput biological data are available for gut microbiota and their association with intestinal diseases, making it easier to gain understanding of microbial physiology at the systems level. In addition, the newly developed genome-scale metabolic models that cover significant proportion of known gut microbes enable researchers to analyze and simulate the system-level metabolic response in response to different stimuli in the gut, providing deeper biological insights. Using metabolic interaction network based on pair-wise metabolic dependencies, we found the same interaction pattern in two IBD datasets and one CRC datasets. We report here for the first time that the growth of significantly enriched bacteria in IBD and CRC patients could be boosted by other bacteria including other significantly increased ones. Conversely, the growth of probiotics could be strongly inhibited from other species, including other probiotics. Therefore, it is very important to take the mutual interaction of probiotics into consideration when developing probiotics or "microbial based therapies." Together, our metabolic interaction network analysis can predict majority of the changes in terms of the changed directions in the gut microbiota during enteropathogenesis. Our results thus revealed unappreciated interaction patterns between species could underlie alterations in gut microbiota during enteropathogenesis, and between probiotics and other microbes. Our methods provided a new framework for studying interactions in gut microbiome and their roles in health and disease.

摘要

近几十年来,越来越多的证据有力地表明,肠道微生物群在许多肠道疾病中发挥着重要作用,包括炎症性肠病(IBD)和结直肠癌(CRC)。肠道微生物群的组成被认为在很大程度上是由对可用资源的种间竞争以及合作相互作用所塑造的。然而,这些变化分别在多大程度上可归因于外部因素(如饮食选择)和内部因素(包括肠道微生物群之间的相互关系),仍有待阐明。由于高通量测序技术的进步,大量的(宏)基因组序列信息和高通量生物学数据可用于肠道微生物群及其与肠道疾病的关联,这使得在系统层面更容易了解微生物生理学。此外,新开发的覆盖了相当比例已知肠道微生物的基因组规模代谢模型,使研究人员能够分析和模拟肠道对不同刺激的系统层面代谢反应,提供更深入的生物学见解。利用基于成对代谢依赖性的代谢相互作用网络,我们在两个IBD数据集和一个CRC数据集中发现了相同的相互作用模式。我们首次在此报告,IBD和CRC患者中显著富集的细菌的生长可被包括其他显著增加的细菌在内的其他细菌促进。相反,益生菌的生长可能会受到其他物种(包括其他益生菌)的强烈抑制。因此,在开发益生菌或“基于微生物的疗法”时,考虑益生菌的相互作用非常重要。总之,我们的代谢相互作用网络分析可以预测肠道发病过程中肠道微生物群变化方向方面的大多数变化。因此,我们的结果揭示了未被认识到的物种间相互作用模式可能是肠道发病过程中肠道微生物群变化以及益生菌与其他微生物之间相互作用的基础。我们的方法为研究肠道微生物组中的相互作用及其在健康和疾病中的作用提供了一个新框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f58c/6558107/0de1eab3bc1e/fmicb-10-01205-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f58c/6558107/a76f0fdb8440/fmicb-10-01205-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f58c/6558107/2613aba56e34/fmicb-10-01205-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f58c/6558107/26cdd2b69b19/fmicb-10-01205-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f58c/6558107/0de1eab3bc1e/fmicb-10-01205-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f58c/6558107/a76f0fdb8440/fmicb-10-01205-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f58c/6558107/2613aba56e34/fmicb-10-01205-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f58c/6558107/26cdd2b69b19/fmicb-10-01205-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f58c/6558107/0de1eab3bc1e/fmicb-10-01205-g004.jpg

相似文献

[1]
Metabolic Dependencies Underlie Interaction Patterns of Gut Microbiota During Enteropathogenesis.

Front Microbiol. 2019-6-4

[2]
The Roles of Inflammation, Nutrient Availability and the Commensal Microbiota in Enteric Pathogen Infection.

Microbiol Spectr. 2015-6

[3]
Dismicrobism in inflammatory bowel disease and colorectal cancer: changes in response of colocytes.

World J Gastroenterol. 2014-12-28

[4]
Gut microbiota in the pathogenesis of inflammatory bowel disease.

Clin J Gastroenterol. 2018-2

[5]
Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis.

World J Gastroenterol. 2014-11-7

[6]
Gut microbiota and colorectal cancer: insights into pathogenesis for novel therapeutic strategies.

Z Gastroenterol. 2017-9

[7]
Interaction between Host MicroRNAs and the Gut Microbiota in Colorectal Cancer.

mSystems. 2018-5-15

[8]
Modulation of Gut Microbiota-Brain Axis by Probiotics, Prebiotics, and Diet.

J Agric Food Chem. 2015-9-1

[9]
The involvement of gut microbiota in inflammatory bowel disease pathogenesis: potential for therapy.

Pharmacol Ther. 2015-1-3

[10]
The potential impact of gut microbiota on your health:Current status and future challenges.

Asian Pac J Allergy Immunol. 2016-12

引用本文的文献

[1]
Characterization of intestinal microbiota in patients with psoriasis combined with metabolic syndrome.

Mol Cell Biochem. 2025-8-20

[2]
A compendium of predicted growths and derived symbiotic relationships between 803 gut microbes in 13 different diets.

Curr Res Microb Sci. 2022-3-23

[3]
The microbiome of the buffalo digestive tract.

Nat Commun. 2022-2-10

[4]
The Potential Effects of Probiotics and ω-3 Fatty Acids on Chronic Low-Grade Inflammation.

Nutrients. 2020-8-11

[5]
MICROBIOTA INSIGHTS IN CLOSTRIDIUM DIFFICILE INFECTION AND INFLAMMATORY BOWEL DISEASE.

Gut Microbes. 2020-11-9

[6]
GMrepo: a database of curated and consistently annotated human gut metagenomes.

Nucleic Acids Res. 2020-1-8

本文引用的文献

[1]
The Gut Microbiota in the Pathogenesis and Therapeutics of Inflammatory Bowel Disease.

Front Microbiol. 2018-9-25

[2]
Gut microbiota associations with common diseases and prescription medications in a population-based cohort.

Nat Commun. 2018-7-9

[3]
Designing microbial consortia with defined social interactions.

Nat Chem Biol. 2018-6-25

[4]
The Intestinal Microbiota in Colorectal Cancer.

Cancer Cell. 2018-4-12

[5]
Preliminary Comparison of Oral and Intestinal Human Microbiota in Patients with Colorectal Cancer: A Pilot Study.

Front Microbiol. 2018-1-12

[6]
Human Gut Microbiota: Toward an Ecology of Disease.

Front Microbiol. 2017-7-17

[7]
More than just a gut feeling: constraint-based genome-scale metabolic models for predicting functions of human intestinal microbes.

Microbiome. 2017-7-14

[8]
The resilience of the intestinal microbiota influences health and disease.

Nat Rev Microbiol. 2017-6-19

[9]
Study protocol on the role of intestinal microbiota in colorectal cancer treatment: a pathway to personalized medicine 2.0.

Int J Colorectal Dis. 2017-7

[10]
Intestinal microbiome landscaping: insight in community assemblage and implications for microbial modulation strategies.

FEMS Microbiol Rev. 2017-3-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索