Karimpour M, Parsaei H, Rojhani-Shirazi Z, Sharifian R, Yazdani F
School of Management & Medical Information Sciences, Health Human Resources Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran.
J Biomed Phys Eng. 2019 Apr 1;9(2):243-250. eCollection 2019 Apr.
Electromyography (EMG) signal processing and Muscle Onset Latency (MOL) are widely used in rehabilitation sciences and nerve conduction studies. The majority of existing software packages provided for estimating MOL via analyzing EMG signal are computerized, desktop based and not portable; therefore, experiments and signal analyzes using them should be completed locally. Moreover, a desktop or laptop is required to complete experiments using these packages, which costs.
Develop a non-expensive and portable Android application (app) for estimating MOL via analyzing surface EMG.
A multi-layer architecture model was designed for implementing the MOL estimation app. Several Android-based algorithms for analyzing a recorded EMG signal and estimating MOL was implemented. A graphical user interface (GUI) that simplifies analyzing a given EMG signal using the presented app was developed too.
Evaluation results of the developed app using 10 EMG signals showed promising performance; the MOL values estimated using the presented app are statistically equal to those estimated using a commercial Windows-based surface EMG analysis software (MegaWin 3.0). For the majority of cases relative error <10%. MOL values estimated by these two systems are linearly related, the correlation coefficient value ~ 0.93. These evaluations revealed that the presented app performed as well as MegaWin 3.0 software in estimating MOL.
Recent advances in smart portable devices such as mobile phones have shown the great capability of facilitating and decreasing the cost of analyzing biomedical signals, particularly in academic environments. Here, we developed an Android app for estimating MOL via analyzing the surface EMG signal. Performance is promising to use the app for teaching or research purposes.
肌电图(EMG)信号处理和肌肉起始潜伏期(MOL)在康复科学和神经传导研究中被广泛应用。现有的大多数通过分析EMG信号来估计MOL的软件包都是基于计算机桌面的,不便于携带;因此,使用它们进行的实验和信号分析都需要在本地完成。此外,使用这些软件包完成实验需要台式机或笔记本电脑,成本较高。
开发一款价格低廉且便于携带的安卓应用程序(app),通过分析表面肌电图来估计MOL。
设计了一种多层架构模型来实现MOL估计应用程序。实现了几种基于安卓的算法,用于分析记录的EMG信号并估计MOL。还开发了一个图形用户界面(GUI),简化了使用该应用程序分析给定EMG信号的过程。
使用10个EMG信号对开发的应用程序进行评估的结果显示出良好的性能;使用该应用程序估计的MOL值在统计学上与使用基于Windows的商用表面肌电图分析软件(MegaWin 3.0)估计的值相等。在大多数情况下,相对误差<10%。这两个系统估计的MOL值呈线性相关,相关系数约为0.93。这些评估表明,该应用程序在估计MOL方面的表现与MegaWin 3.0软件相当。
手机等智能便携式设备的最新进展显示出在促进生物医学信号分析和降低成本方面的巨大能力,特别是在学术环境中。在此,我们开发了一款安卓应用程序,通过分析表面EMG信号来估计MOL。该应用程序用于教学或研究目的的性能很有前景。