Suppr超能文献

表面肌电信号处理和分类技术。

Surface electromyography signal processing and classification techniques.

机构信息

Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia.

出版信息

Sensors (Basel). 2013 Sep 17;13(9):12431-66. doi: 10.3390/s130912431.

Abstract

Electromyography (EMG) signals are becoming increasingly important in many applications, including clinical/biomedical, prosthesis or rehabilitation devices, human machine interactions, and more. However, noisy EMG signals are the major hurdles to be overcome in order to achieve improved performance in the above applications. Detection, processing and classification analysis in electromyography (EMG) is very desirable because it allows a more standardized and precise evaluation of the neurophysiological, rehabitational and assistive technological findings. This paper reviews two prominent areas; first: the pre-processing method for eliminating possible artifacts via appropriate preparation at the time of recording EMG signals, and second: a brief explanation of the different methods for processing and classifying EMG signals. This study then compares the numerous methods of analyzing EMG signals, in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above.

摘要

肌电图(EMG)信号在许多应用中变得越来越重要,包括临床/生物医学、假肢或康复设备、人机交互等。然而,为了在上述应用中实现性能的提高,需要克服噪声肌电图信号这一主要障碍。肌电图(EMG)的检测、处理和分类分析是非常可取的,因为它允许对神经生理学、康复和辅助技术发现进行更标准化和精确的评估。本文综述了两个突出的领域;首先:通过在记录 EMG 信号时进行适当的准备来消除可能的伪影的预处理方法,其次:简要解释处理和分类 EMG 信号的不同方法。然后,本研究比较了分析 EMG 信号的众多方法,根据它们的性能。本文的关键是回顾与上述问题相关的最新发展和研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6cf/3821366/dffed2dca720/sensors-13-12431f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验