Suppr超能文献

使用数据挖掘技术分析反复住院情况。

Analysing repeated hospital readmissions using data mining techniques.

作者信息

Ben-Assuli Ofir, Padman Rema

机构信息

Information Systems Department, Faculty of Business Administration, Ono Academic College, Kiryat Ono, Israel.

The H. John Heinz III College, Carnegie Mellon University, Pittsburgh, PA, USA.

出版信息

Health Syst (Basingstoke). 2018 Nov 9;7(3):166-180. doi: 10.1080/20476965.2018.1510040. eCollection 2018.

Abstract

Few studies have examined how to identify future readmission of patients with a large number of repeat emergency department (ED) visits. We explore 30-day readmission risk prediction using Microsoft's AZURE machine learning software and compare five classification methods: Logistic Regression, Boosted Decision Trees (BDTs), Support Vector Machine (SVM), Bayes Point Machine (BPM), and Two-Class Neural Network (TCNN). We predict the last readmission visit of frequent ED patients extracted from the electronic health records of their 8455 penultimate visits. The methods show differential improvement, with the BDT indicating marginally better AUC (area under the ROC curve) than logistic regression and BPM, followed by the TCNN and SVM. A comparison of BDT and Logistic Regression results for correct and incorrect classification highlights the similarities and differences in the significant predictors identified by each method. Future research may incorporate time-varying covariates to identify other longitudinal factors that can lead to readmission risk reduction.

摘要

很少有研究探讨如何识别有大量重复急诊科就诊史的患者未来的再入院情况。我们使用微软的AZURE机器学习软件探索30天再入院风险预测,并比较五种分类方法:逻辑回归、增强决策树(BDT)、支持向量机(SVM)、贝叶斯点机器(BPM)和二类神经网络(TCNN)。我们预测了从8455次倒数第二次就诊的电子健康记录中提取的频繁急诊科患者的最后一次再入院就诊情况。这些方法显示出不同程度的改进,BDT的ROC曲线下面积(AUC)略优于逻辑回归和BPM,其次是TCNN和SVM。BDT和逻辑回归结果在正确和错误分类方面的比较突出了每种方法所识别的显著预测因素的异同。未来的研究可能会纳入随时间变化的协变量,以识别其他可降低再入院风险的纵向因素。

相似文献

1
Analysing repeated hospital readmissions using data mining techniques.
Health Syst (Basingstoke). 2018 Nov 9;7(3):166-180. doi: 10.1080/20476965.2018.1510040. eCollection 2018.
2
Analysing repeated hospital readmissions using data mining techniques.
Health Syst (Basingstoke). 2017 Nov 7;7(2):120-134. doi: 10.1080/20476965.2017.1390635. eCollection 2018.
4
Seminal quality prediction using data mining methods.
Technol Health Care. 2014;22(4):531-45. doi: 10.3233/THC-140816.
6
Application of machine learning in predicting hospital readmissions: a scoping review of the literature.
BMC Med Res Methodol. 2021 May 6;21(1):96. doi: 10.1186/s12874-021-01284-z.
8
Emergency department triage prediction of clinical outcomes using machine learning models.
Crit Care. 2019 Feb 22;23(1):64. doi: 10.1186/s13054-019-2351-7.
9
Machine Learning Prediction of Postoperative Emergency Department Hospital Readmission.
Anesthesiology. 2020 May;132(5):968-980. doi: 10.1097/ALN.0000000000003140.
10
Analysis of Feature Extraction Methods for Prediction of 30-Day Hospital Readmissions.
Methods Inf Med. 2019 Dec;58(6):213-221. doi: 10.1055/s-0040-1702159. Epub 2020 Apr 29.

引用本文的文献

1
Predicting Readmission Charges Billed by Hospitals: Machine Learning Approach.
JMIR Med Inform. 2022 Aug 30;10(8):e37578. doi: 10.2196/37578.

本文引用的文献

1
Ensemble Risk Model of Emergency Readmissions (ERMER).
Int J Med Inform. 2017 Jul;103:65-77. doi: 10.1016/j.ijmedinf.2017.04.010. Epub 2017 Apr 18.
2
Discharge decision-making after complex surgery: Surgeon behaviors compared to predictive modeling to reduce surgical readmissions.
Am J Surg. 2017 Jan;213(1):112-119. doi: 10.1016/j.amjsurg.2016.03.010. Epub 2016 Oct 20.
5
Comprehensible Predictive Modeling Using Regularized Logistic Regression and Comorbidity Based Features.
PLoS One. 2015 Dec 8;10(12):e0144439. doi: 10.1371/journal.pone.0144439. eCollection 2015.
6
Prevalence and temporal pattern of hospital readmissions for patients with type I and type II diabetes.
BMJ Open. 2015 Nov 2;5(11):e007362. doi: 10.1136/bmjopen-2014-007362.
7
A comparison of models for predicting early hospital readmissions.
J Biomed Inform. 2015 Aug;56:229-38. doi: 10.1016/j.jbi.2015.05.016. Epub 2015 Jun 1.
8
Improving diagnostic accuracy using EHR in emergency departments: A simulation-based study.
J Biomed Inform. 2015 Jun;55:31-40. doi: 10.1016/j.jbi.2015.03.004. Epub 2015 Mar 25.
9
Precise prediction for managing chronic disease readmissions.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:2734-7. doi: 10.1109/EMBC.2014.6944188.
10
Managing the increasing shortage of acute care hospital beds in Israel.
J Eval Clin Pract. 2015 Feb;21(1):79-84. doi: 10.1111/jep.12246. Epub 2014 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验