Department of Electrical and Computer Engineering, Texas Tech University, 1012 Boston Ave, Lubbock, 79409, TX, USA.
Department of Mathematics and Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, 79409, TX, USA.
BMC Bioinformatics. 2019 Jun 20;20(Suppl 12):317. doi: 10.1186/s12859-019-2831-4.
Clinical studies often track dose-response curves of subjects over time. One can easily model the dose-response curve at each time point with Hill equation, but such a model fails to capture the temporal evolution of the curves. On the other hand, one can use Gompertz equation to model the temporal behaviors at each dose without capturing the evolution of time curves across dosage.
In this article, we propose a parametric model for dose-time responses that follows Gompertz law in time and Hill equation across dose approximately. We derive a recursion relation for dose-response curves over time capturing the temporal evolution and then specify a regression model connecting the parameters controlling the dose-time responses with individual level proteomic data. The resultant joint model allows us to predict the dose-response curves over time for new individuals.
We have compared the efficacy of our proposed Recursive Hybrid model with individual dose-response predictive models at desired time points. We note that our proposed model exhibits a superior performance compared to the individual ones for both synthetic data and actual pharmacological data. For the desired dose-time varying genetic characterization and drug response values, we have used the HMS-LINCS database and demonstrated the effectiveness of our model for all available anticancer compounds.
临床研究通常会跟踪受试者随时间推移的剂量-反应曲线。人们可以很容易地用 Hill 方程来模拟每个时间点的剂量-反应曲线,但这种模型无法捕捉到曲线的时间演变。另一方面,人们可以使用 Gompertz 方程来模拟每个剂量点的时间行为,而不捕捉剂量变化时的时间曲线的演变。
在本文中,我们提出了一种剂量-时间反应的参数模型,该模型在时间上遵循 Gompertz 定律,在剂量上大致遵循 Hill 方程。我们推导出了一个随时间变化的剂量-反应曲线的递归关系,以捕捉时间演变,然后指定一个回归模型,将控制剂量-时间反应的参数与个体水平的蛋白质组学数据联系起来。所得的联合模型允许我们预测新个体随时间的剂量-反应曲线。
我们比较了我们提出的递归混合模型与在期望时间点的个体剂量-反应预测模型的效果。我们注意到,与个体模型相比,我们提出的模型在合成数据和实际药理学数据中都表现出了更好的性能。对于所需的剂量-时间变化的遗传特征和药物反应值,我们使用了 HMS-LINCS 数据库,并证明了我们的模型对所有可用的抗癌化合物都是有效的。