Suppr超能文献

小分子诱导的结构域交换作为控制蛋白质功能和组装的一种机制。

Small Molecule-Induced Domain Swapping as a Mechanism for Controlling Protein Function and Assembly.

机构信息

Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA.

出版信息

Sci Rep. 2017 Mar 13;7:44388. doi: 10.1038/srep44388.

Abstract

Domain swapping is the process by which identical proteins exchange reciprocal segments to generate dimers. Here we introduce induced domain swapping (INDOS) as a mechanism for regulating protein function. INDOS employs a modular design consisting of the fusion of two proteins: a recognition protein that binds a triggering molecule, and a target protein that undergoes a domain swap in response to binding of the triggering ligand. The recognition protein (FK506 binding protein) is inserted into functionally-inactivated point mutants of two target proteins (staphylococcal nuclease and ribose binding protein). Binding of FK506 to the FKBP domain causes the target domain to first unfold, then refold via domain swap. The inactivating mutations become 'swapped out' in the dimer, increasing nuclease and ribose binding activities by 100-fold and 15-fold, respectively, restoring them to near wild-type values. INDOS is intended to convert an arbitrary protein into a functional switch, and is the first example of rational design in which a small molecule is used to trigger protein domain swapping and subsequent activation of biological function.

摘要

结构域交换是指相同蛋白质交换相互对应的片段以形成二聚体的过程。在这里,我们提出诱导结构域交换(INDOS)作为一种调节蛋白质功能的机制。INDOS 采用模块化设计,由两种蛋白质融合而成:一种是识别蛋白质,它能结合触发分子;另一种是靶蛋白,它能在结合触发配体后发生结构域交换。将 FK506 结合蛋白插入到两个靶蛋白(葡萄球菌核酸酶和核糖结合蛋白)的功能失活点突变体中。FK506 与 FKBP 结构域的结合导致靶结构域首先展开,然后通过结构域交换重新折叠。在二聚体中,失活突变被“交换”出去,分别使核酸酶和核糖结合活性增加 100 倍和 15 倍,使其恢复到接近野生型水平。INDOS 旨在将任意蛋白质转化为功能性开关,是第一个使用小分子触发蛋白质结构域交换和随后激活生物功能的理性设计的例子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/927f/5347425/ea0d6d735075/srep44388-f1.jpg

相似文献

2
Crystal structures of carboxypeptidase T complexes with transition-state analogs.
J Biomol Struct Dyn. 2018 Nov;36(15):3958-3966. doi: 10.1080/07391102.2017.1404932. Epub 2017 Nov 23.
3
Dimerization ability, denaturation mechanism, and the stability of a staphylococcal phage repressor and its two domains.
Int J Biol Macromol. 2019 Mar 1;124:903-914. doi: 10.1016/j.ijbiomac.2018.11.263. Epub 2018 Dec 2.
9
Recognition and targeting mechanisms by chaperones in flagellum assembly and operation.
Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):9798-803. doi: 10.1073/pnas.1607845113. Epub 2016 Aug 15.
10
Structure of Outward-Facing PglK and Molecular Dynamics of Lipid-Linked Oligosaccharide Recognition and Translocation.
Structure. 2019 Apr 2;27(4):669-678.e5. doi: 10.1016/j.str.2019.01.013. Epub 2019 Feb 21.

引用本文的文献

1
Enhancing response of a protein conformational switch by using two disordered ligand binding domains.
Front Mol Biosci. 2023 Mar 2;10:1114756. doi: 10.3389/fmolb.2023.1114756. eCollection 2023.
2
Engineering protein and DNA tools for creating DNA-dependent protein switches.
Methods Enzymol. 2022;675:1-32. doi: 10.1016/bs.mie.2022.07.002. Epub 2022 Aug 23.
3
Redox- and metal-directed structural diversification in designed metalloprotein assemblies.
Chem Commun (Camb). 2022 Jun 16;58(49):6958-6961. doi: 10.1039/d2cc02440c.
4
Engineering protein activity into off-the-shelf DNA devices.
Cell Rep Methods. 2022 Apr 18;2(4):100202. doi: 10.1016/j.crmeth.2022.100202. eCollection 2022 Apr 25.
5
Protein Assembly by Design.
Chem Rev. 2021 Nov 24;121(22):13701-13796. doi: 10.1021/acs.chemrev.1c00308. Epub 2021 Aug 18.
6
Biosynthesis of Nature-Inspired Unnatural Cannabinoids.
Molecules. 2021 May 14;26(10):2914. doi: 10.3390/molecules26102914.
8
Engineering the hCRBPII Domain-Swapped Dimer into a New Class of Protein Switches.
J Am Chem Soc. 2019 Oct 30;141(43):17125-17132. doi: 10.1021/jacs.9b04664. Epub 2019 Oct 16.
9
A Single Protein Disruption Site Results in Efficient Reassembly by Multiple Engineering Methods.
Biophys J. 2019 Jul 9;117(1):56-65. doi: 10.1016/j.bpj.2019.06.002. Epub 2019 Jun 7.
10
Converting a Periplasmic Binding Protein into a Synthetic Biosensing Switch through Domain Insertion.
Biomed Res Int. 2019 Jan 3;2019:4798793. doi: 10.1155/2019/4798793. eCollection 2019.

本文引用的文献

1
Domain-swap polymerization drives the self-assembly of the bacterial flagellar motor.
Nat Struct Mol Biol. 2016 Mar;23(3):197-203. doi: 10.1038/nsmb.3172. Epub 2016 Feb 8.
3
Engineered Domain Swapping as an On/Off Switch for Protein Function.
Chem Biol. 2015 Oct 22;22(10):1384-93. doi: 10.1016/j.chembiol.2015.09.007.
4
The fluorescence properties and binding mechanism of SYTOX green, a bright, low photo-damage DNA intercalating agent.
Eur Biophys J. 2015 Jul;44(5):337-48. doi: 10.1007/s00249-015-1027-8. Epub 2015 May 31.
6
Optical control of protein-protein interactions via blue light-induced domain swapping.
Biochemistry. 2014 Aug 5;53(30):5008-16. doi: 10.1021/bi500622x. Epub 2014 Jul 16.
7
Intermolecular domain swapping induces intein-mediated protein alternative splicing.
Nat Chem Biol. 2013 Oct;9(10):616-22. doi: 10.1038/nchembio.1320. Epub 2013 Aug 25.
10
Thinking outside the cell: how cadherins drive adhesion.
Trends Cell Biol. 2012 Jun;22(6):299-310. doi: 10.1016/j.tcb.2012.03.004. Epub 2012 May 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验