Suppr超能文献

光氧化还原-布朗斯特碱混合催化实现烯醇硅醚的直接烯丙基C-H烷基化反应。

Direct allylic C-H alkylation of enol silyl ethers enabled by photoredox-Brønsted base hybrid catalysis.

作者信息

Ohmatsu Kohsuke, Nakashima Tsubasa, Sato Makoto, Ooi Takashi

机构信息

Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, 464-8601, Japan.

CREST, Japan Science and Technology Agency (JST), Nagoya, 464-8601, Japan.

出版信息

Nat Commun. 2019 Jun 20;10(1):2706. doi: 10.1038/s41467-019-10641-y.

Abstract

Strategies for altering the reaction pathway of reactive intermediates are of significant importance in diversifying organic synthesis. Enol silyl ethers, versatile enolate equivalents, are known to undergo one-electron oxidation to generate the radical cations that spontaneously form electrophilic α-carbonyl radicals via elimination of the silyl groups. Here, we demonstrate that close scrutiny of the property of the radical cations as strong C-H acids enables the identification of a catalyst system consisting of an iridium-based photosensitizer and 2,4,6-collidine for the generation of nucleophilic allylic radicals from enol silyl ethers through one-electron oxidation-deprotonation sequence under light irradiation without the desilylation of the radical cation intermediates. The resultant allylic radicals engage in the addition to electron-deficient olefins, establishing the selective allylic C-H alkylation of enol silyl ethers. This strategy is broadly applicable, and the alkylated enol silyl ethers can be transformed into highly functionalized carbonyl compounds by exploiting their common polar reactivity.

摘要

改变反应中间体反应途径的策略对于丰富有机合成具有重要意义。烯醇硅醚作为通用的烯醇负离子等价物,已知可进行单电子氧化生成自由基阳离子,这些自由基阳离子通过消除硅基自发形成亲电α-羰基自由基。在此,我们证明,仔细研究作为强C-H酸的自由基阳离子的性质,可以确定一种由铱基光敏剂和2,4,6-可力丁组成的催化体系,用于在光照下通过单电子氧化-去质子化序列从烯醇硅醚生成亲核烯丙基自由基,而不会使自由基阳离子中间体发生脱硅反应。生成的烯丙基自由基与缺电子烯烃发生加成反应,实现烯醇硅醚的选择性烯丙基C-H烷基化。该策略具有广泛的适用性,通过利用其常见的极性反应性,烷基化的烯醇硅醚可转化为高度官能化的羰基化合物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d53c/6586846/ece51226a41a/41467_2019_10641_Fig1_HTML.jpg

相似文献

2
Exploiting Transient Radical Cations as Brønsted Acids for Allylic C-H Heteroarylation of Enol Silyl Ethers.
Chemistry. 2021 Jun 25;27(36):9253-9256. doi: 10.1002/chem.202101352. Epub 2021 May 27.
5
Expanding the chemical space of enol silyl ethers: catalytic dicarbofunctionalization enabled by iron catalysis.
Chem Sci. 2023 Oct 20;14(45):13007-13013. doi: 10.1039/d3sc04549h. eCollection 2023 Nov 22.
7
Photoredox Reaction of 2-Mercaptothiazolinium Salts with Silyl Enol Ethers.
J Org Chem. 2019 Dec 6;84(23):15745-15753. doi: 10.1021/acs.joc.9b02478. Epub 2019 Nov 18.
8
Direct transformation of silyl enol ethers into functionalized allenes.
Chemistry. 2001 Feb 2;7(3):573-84. doi: 10.1002/1521-3765(20010202)7:3<573::aid-chem573>3.0.co;2-i.
9
A Photochemical Organocatalytic Strategy for the α-Alkylation of Ketones by using Radicals.
Angew Chem Int Ed Engl. 2020 Jun 8;59(24):9485-9490. doi: 10.1002/anie.201915814. Epub 2020 Mar 18.
10
Latent Pronucleophiles in Lewis Base Catalysis: Enantioselective Allylation of Silyl Enol Ethers with Allylic Fluorides.
Chemistry. 2023 Jul 3;29(37):e202300641. doi: 10.1002/chem.202300641. Epub 2023 May 9.

引用本文的文献

1
Synergistic Copper-Aminocatalysis for Direct Tertiary α-Alkylation of Ketones with Electron-Deficient Alkanes.
Adv Sci (Weinh). 2024 Aug;11(31):e2402255. doi: 10.1002/advs.202402255. Epub 2024 Jun 17.
2
Expanding the chemical space of enol silyl ethers: catalytic dicarbofunctionalization enabled by iron catalysis.
Chem Sci. 2023 Oct 20;14(45):13007-13013. doi: 10.1039/d3sc04549h. eCollection 2023 Nov 22.
5
Formal β-C-H Arylation of Aldehydes and Ketones by Cooperative Nickel and Photoredox Catalysis.
Angew Chem Int Ed Engl. 2022 Aug 1;61(31):e202206533. doi: 10.1002/anie.202206533. Epub 2022 Jun 23.
6
Photoredox-Catalyzed C-H Functionalization Reactions.
Chem Rev. 2022 Jan 26;122(2):1925-2016. doi: 10.1021/acs.chemrev.1c00311. Epub 2021 Sep 29.
7
Synthesis of quaternary centres by single electron reduction and alkylation of alkylsulfones.
Chem Sci. 2021 Feb 4;12(13):4866-4871. doi: 10.1039/d1sc00133g.
9
Chemiluminescence-promoted oxidation of alkyl enol ethers by NHPI under mild conditions and in the dark.
Tetrahedron. 2021 Feb;82. doi: 10.1016/j.tet.2020.131874. Epub 2020 Dec 24.

本文引用的文献

1
Generation and Alkylation of α-Carbamyl Radicals via Organic Photoredox Catalysis.
J Am Chem Soc. 2018 Jul 25;140(29):9056-9060. doi: 10.1021/jacs.8b04890. Epub 2018 Jul 10.
2
Recent developments in transition-metal photoredox-catalysed reactions of carbonyl derivatives.
Chem Commun (Camb). 2017 Dec 7;53(98):13093-13112. doi: 10.1039/c7cc06287g.
4
Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer.
Nature. 2016 Nov 10;539(7628):268-271. doi: 10.1038/nature19811. Epub 2016 Oct 12.
5
Synthetic Utilization of α-Aminoalkyl Radicals and Related Species in Visible Light Photoredox Catalysis.
Acc Chem Res. 2016 Sep 20;49(9):1946-56. doi: 10.1021/acs.accounts.6b00251. Epub 2016 Aug 9.
6
Sterically Demanding Oxidative Amidation of α-Substituted Malononitriles with Amines Using O2.
Angew Chem Int Ed Engl. 2016 Jul 25;55(31):9060-4. doi: 10.1002/anie.201603399. Epub 2016 Jun 14.
7
Selective Radical-Radical Cross-Couplings: Design of a Formal β-Mannich Reaction.
J Am Chem Soc. 2015 Jul 8;137(26):8404-7. doi: 10.1021/jacs.5b05376. Epub 2015 Jun 29.
8
The direct arylation of allylic sp(3) C-H bonds via organic and photoredox catalysis.
Nature. 2015 Mar 5;519(7541):74-7. doi: 10.1038/nature14255.
9
Direct β-alkylation of aldehydes via photoredox organocatalysis.
J Am Chem Soc. 2014 May 14;136(19):6858-61. doi: 10.1021/ja502639e. Epub 2014 Apr 29.
10
Direct β-functionalization of cyclic ketones with aryl ketones via the merger of photoredox and organocatalysis.
J Am Chem Soc. 2013 Dec 11;135(49):18323-6. doi: 10.1021/ja410478a. Epub 2013 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验