Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG-1), Herrmann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
Karlsruhe Institute of Technology (KIT), Institute for Applied Biosciences (IAB), Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany.
Sci Rep. 2019 Jun 20;9(1):8933. doi: 10.1038/s41598-019-45414-6.
Biofilms are the natural form of life of the majority of microorganisms. These multispecies consortia are intensively studied not only for their effects on health and environment but also because they have an enormous potential as tools for biotechnological processes. Further exploration and exploitation of these complex systems will benefit from technical solutions that enable integrated, machine-assisted cultivation and analysis. We here introduce a microfluidic platform, where readily available microfluidic chips are connected by automated liquid handling with analysis instrumentation, such as fluorescence detection, microscopy, chromatography and optical coherence tomography. The system is operable under oxic and anoxic conditions, allowing for different gases and nutrients as feeding sources and it offers high spatiotemporal resolution in the analysis of metabolites and biofilm composition. We demonstrate the platform's performance by monitoring the productivity of biofilms as well as the spatial organization of two bacterial species in a co-culture, which is driven by chemical gradients along the microfluidic channel.
生物膜是大多数微生物的自然生存形式。这些多物种共生体不仅因其对健康和环境的影响而受到深入研究,还因为它们具有作为生物技术过程工具的巨大潜力。进一步探索和开发这些复杂系统将受益于技术解决方案,这些解决方案可以实现集成的、机器辅助的培养和分析。我们在这里介绍了一个微流控平台,其中通过自动化液体处理将现成的微流控芯片与荧光检测、显微镜、色谱和光相干断层扫描等分析仪器连接起来。该系统可在有氧和缺氧条件下运行,允许使用不同的气体和营养物质作为饲料来源,并且在分析代谢物和生物膜组成方面具有高时空分辨率。我们通过监测生物膜的生产力以及沿微流道的化学梯度驱动的两种细菌共培养物的空间组织,展示了该平台的性能。