Karlsruhe Institute for Technology (KIT), Institute for Biological Interfaces (IBG 1), Eggenstein-Leopoldshafen, Germany.
Department of Genetics and Cytology, National Research Centre (NRC), Cairo, Egypt.
Biotechnol Bioeng. 2021 Oct;118(10):3860-3870. doi: 10.1002/bit.27861. Epub 2021 Jun 22.
We here report the application of a machine-based microfluidic biofilm cultivation and analysis platform for studying the performance of biocatalytically active biofilms. By using robotic sampling, we succeeded in spatially resolving the productivity of three microfluidic reactors containing biocatalytically active biofilms that inducibly overexpress recombinant enzymes. Escherichia coli biofilms expressing two stereoselective oxidoreductases, the (R)-selective alcohol dehydrogenase LbADH and the (S)-selective ketoreductase Gre2p, as well as the phenolic acid decarboxylase EsPAD were used. The excellent reproducibility of the cultivation and analysis methods observed for all three systems underlines the usefulness of the new technical platform for the investigation of biofilms. In addition, we demonstrated that the analytical platform also opens up new opportunities to perform in-depth spatially resolved studies on the biomass growth in a reactor channel and its biochemical productivity. Since the platform not only offers the detailed biochemical characterization but also broad capabilities for the morphological study of living biofilms, we believe that our approach can also be performed on many other natural and artificial biofilms to systematically investigate a wide range of process parameters in a highly parallel manner using miniaturized model systems, thus advancing the harnessing of microbial communities for technical purposes.
我们在此报告了一种基于机器的微流控生物膜培养和分析平台在研究生物催化活性生物膜性能方面的应用。通过使用机器人采样,我们成功地对三个含有生物催化活性生物膜的微流反应器的生产力进行了空间分辨,这些生物膜可诱导过表达重组酶。我们使用了表达两种立体选择性氧化还原酶的大肠杆菌生物膜,即(R)-选择性醇脱氢酶 LbADH 和(S)-选择性酮还原酶 Gre2p,以及酚酸脱羧酶 EsPAD。所有三个系统都观察到培养和分析方法的出色重现性,这强调了新技术平台在生物膜研究中的有用性。此外,我们还证明了该分析平台还为在反应器通道中进行深入的空间分辨生物量生长及其生化生产力研究开辟了新的机会。由于该平台不仅提供详细的生化特性描述,还具有对活生物膜进行形态研究的广泛能力,我们相信我们的方法也可以在许多其他天然和人工生物膜上进行,以使用小型化模型系统以高度并行的方式系统地研究广泛的过程参数,从而推进微生物群落的技术利用。