Ingargiola Antonino, Segal Maya, Gulinatti Angelo, Rech Ivan, Labanca Ivan, Maccagnani Piera, Ghioni Massimo, Weiss Shimon, Michalet Xavier
Department of Chemistry and Biochemistry, University of California Los Angeles, USA.
Dip. di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy.
Nucl Instrum Methods Phys Res A. 2018 Dec 21;9(12):255-258. doi: 10.1016/j.nima.2017.11.070. Epub 2017 Nov 24.
Single-molecule fluorescence spectroscopy (SMFS), based on the detection of individual molecules freely diffusing through the excitation spot of a confocal microscope, has allowed unprecedented insights into biological processes at the molecular level, but suffers from limited throughput. We have recently introduced a multispot version of SMFS, which allows achieving high-throughput SMFS by virtue of parallelization, and relies on custom silicon single-photon avalanche diode (SPAD) detector arrays. Here, we examine the premise of this parallelization approach, which is that data acquired from different spots is uncorrelated. In particular, we measure the optical crosstalk characteristics of the two 48-pixel SPAD arrays used in our recent SMFS studies, and demonstrate that it is negligible (crosstalk probability ≤ 1.1 10) and undetectable in cross-correlation analysis of actual single-molecule fluorescence data.
单分子荧光光谱法(SMFS)基于对自由扩散通过共聚焦显微镜激发光斑的单个分子的检测,使得人们能够在分子水平上以前所未有的方式洞察生物过程,但该方法存在通量有限的问题。我们最近推出了一种多光斑版本的SMFS,它借助并行化实现了高通量SMFS,并依赖于定制的硅单光子雪崩二极管(SPAD)探测器阵列。在此,我们研究了这种并行化方法的前提,即从不同光斑获取的数据是不相关的。特别是,我们测量了我们最近的SMFS研究中使用的两个48像素SPAD阵列的光学串扰特性,并证明其可忽略不计(串扰概率≤1.1×10⁻⁶),且在实际单分子荧光数据的互相关分析中无法检测到。