Department of Chemistry & Biochemistry, UCLA, Los Angeles, CA 90095, USA.
Department of Chemistry & Biochemistry, UCLA, Los Angeles, CA 90095, USA; Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
Methods. 2019 Oct 1;169:21-45. doi: 10.1016/j.ymeth.2019.07.021. Epub 2019 Jul 26.
Single-molecule Förster resonance energy transfer (smFRET) is a powerful technique for nanometer-scale studies of single molecules. Solution-based smFRET, in particular, can be used to study equilibrium intra- and intermolecular conformations, binding/unbinding events and conformational changes under biologically relevant conditions without ensemble averaging. However, single-spot smFRET measurements in solution are slow. Here, we detail a high-throughput smFRET approach that extends the traditional single-spot confocal geometry to a multispot one. The excitation spots are optically conjugated to two custom silicon single photon avalanche diode (SPAD) arrays. Two-color excitation is implemented using a periodic acceptor excitation (PAX), allowing distinguishing between singly- and doubly-labeled molecules. We demonstrate the ability of this setup to rapidly and accurately determine FRET efficiencies and population stoichiometries by pooling the data collected independently from the multiple spots. We also show how the high throughput of this approach can be used o increase the temporal resolution of single-molecule FRET population characterization from minutes to seconds. Combined with microfluidics, this high-throughput approach will enable simple real-time kinetic studies as well as powerful molecular screening applications.
单分子Förster 共振能量转移(smFRET)是一种用于单分子纳米尺度研究的强大技术。特别是基于溶液的 smFRET 可用于在不进行整体平均的情况下研究生物相关条件下的平衡分子内和分子间构象、结合/解结合事件以及构象变化。然而,溶液中单点 smFRET 测量速度较慢。在这里,我们详细介绍了一种高通量 smFRET 方法,该方法将传统的单点共焦几何形状扩展到多斑点几何形状。激发斑点与两个定制的硅单光子雪崩二极管(SPAD)阵列光学共轭。使用周期性供体激发(PAX)实现双色激发,允许区分单标记和双标记分子。我们通过汇集从多个斑点独立收集的数据,展示了该设置快速准确地确定 FRET 效率和群体化学计量的能力。我们还展示了该方法的高通量如何用于将单分子 FRET 群体特征的时间分辨率从分钟提高到秒。与微流控技术相结合,这种高通量方法将能够实现简单的实时动力学研究以及强大的分子筛选应用。