Suppr超能文献

由于近端肌肉强化导致的骨盆下降变化取决于足踝内翻对线情况。

Pelvic Drop Changes due to Proximal Muscle Strengthening Depend on Foot-Ankle Varus Alignment.

作者信息

Cruz Aline de Castro, Fonseca Sérgio Teixeira, Araújo Vanessa Lara, Carvalho Diego da Silva, Barsante Leonardo Drumond, Pinto Valéria Andrade, Souza Thales Rezende

机构信息

Graduate Program in Rehabilitation Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

Department of Physical Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

出版信息

Appl Bionics Biomech. 2019 May 12;2019:2018059. doi: 10.1155/2019/2018059. eCollection 2019.

Abstract

BACKGROUND

Strengthening of hip and trunk muscles can modify pelvis and hip movements. However, the varus alignment of the foot-ankle complex (FAC) may influence the effects of muscle strengthening, due to the relationship of FAC alignment with pelvic and hip kinematics. This study evaluated the effects of hip and trunk muscle strengthening on pelvis and hip kinematics during walking, in subgroups with larger and smaller values of FAC varus alignment. In addition, this study evaluated the effects of hip and trunk muscle strengthening on hip passive and active properties, in the same subgroups.

METHODS

Fifty-three women, who were divided into intervention and control groups, participated in this nonrandomized controlled trial. Each group was split into two subgroups with larger and smaller values of FAC varus alignment. Hip and trunk muscle strengthening was performed three times a week for two months, with a load of 70% to 80% of one repetition maximum. Before and after strengthening, we evaluated (1) pelvis and hip excursions in the frontal and transverse planes during walking, (2) isokinetic hip passive external rotator torque, and (3) isokinetic concentric and eccentric peak torques of the hip external rotator muscles. Mixed analyses of variance (ANOVAs) were carried out for each dependent variable related to walking kinematics and isokinetic measurements ( = 0.05).

RESULTS

The subgroup with smaller varus alignment, of the intervention group, presented a reduction in pelvic drop after strengthening ( = 0.03). The subgroup with larger varus alignment increased pelvic drop after strengthening, with a marginal significance ( = 0.06). The other kinematic excursions did not change (pelvic anterior rotation = 0.30, hip internal rotation = 0.54, and hip adduction = 0.43). The intervention group showed increases in passive torque ( = 0.002), peak concentric torque ( < 0.001), and peak eccentric torque ( < 0.001), independently of FAC alignment. These results suggest that FAC varus alignment influences the effects of strengthening and should be considered when hip and trunk muscle strengthening is used to reduce pelvic drop during walking.

摘要

背景

加强髋部和躯干肌肉可改变骨盆和髋部运动。然而,由于足踝复合体(FAC)的内翻对线与骨盆和髋部运动学之间的关系,FAC的内翻对线可能会影响肌肉强化的效果。本研究评估了在FAC内翻对线值较大和较小的亚组中,髋部和躯干肌肉强化对步行过程中骨盆和髋部运动学的影响。此外,本研究还评估了在相同亚组中,髋部和躯干肌肉强化对髋部被动和主动特性的影响。

方法

53名女性被分为干预组和对照组,参与了这项非随机对照试验。每组又被分为FAC内翻对线值较大和较小的两个亚组。髋部和躯干肌肉强化每周进行3次,持续2个月,负荷为一次最大重复量的70%至80%。在强化前后,我们评估了:(1)步行过程中骨盆和髋部在额状面和横断面的移动;(2)等速髋部被动外旋扭矩;(3)髋部外旋肌的等速向心和离心峰值扭矩。对与步行运动学和等速测量相关的每个因变量进行混合方差分析(α = 0.05)。

结果

干预组中FAC内翻对线值较小的亚组在强化后骨盆下降减少(P = 0.03)。FAC内翻对线值较大的亚组在强化后骨盆下降增加,具有边缘显著性(P = 0.06)。其他运动学移动没有变化(骨盆前倾P = 0.30,髋部内旋P = 0.54,髋部内收P = 0.43)。干预组的被动扭矩(P = 0.002)、向心峰值扭矩(P < 0.001)和离心峰值扭矩(P < 0.001)均增加,与FAC对线无关。这些结果表明,FAC内翻对线会影响强化效果,在使用髋部和躯干肌肉强化来减少步行过程中的骨盆下降时应予以考虑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0215/6541954/ba06c4dc4a71/ABB2019-2018059.001.jpg

相似文献

1
Pelvic Drop Changes due to Proximal Muscle Strengthening Depend on Foot-Ankle Varus Alignment.
Appl Bionics Biomech. 2019 May 12;2019:2018059. doi: 10.1155/2019/2018059. eCollection 2019.
2
Reductions in rearfoot eversion posture due to proximal muscle strengthening are dependent on foot-ankle varus alignment.
J Bodyw Mov Ther. 2024 Jul;39:79-86. doi: 10.1016/j.jbmt.2024.02.001. Epub 2024 Feb 23.
3
Effects of hip and trunk muscle strengthening on hip function and lower limb kinematics during step-down task.
Clin Biomech (Bristol). 2017 May;44:28-35. doi: 10.1016/j.clinbiomech.2017.02.012. Epub 2017 Feb 27.
7
Rehabilitation improves walking kinematics in children with a knee varus: Randomized controlled trial.
Ann Phys Rehabil Med. 2018 May;61(3):125-134. doi: 10.1016/j.rehab.2018.01.007. Epub 2018 Feb 21.
8
The influence of forefoot varus on eccentric hip torque in adolescents.
Man Ther. 2013 Dec;18(6):487-91. doi: 10.1016/j.math.2013.05.001. Epub 2013 Jun 4.
9
Sex differences in trunk, pelvis, hip and knee kinematics and eccentric hip torque in adolescents.
Clin Biomech (Bristol). 2014 Nov;29(9):1063-9. doi: 10.1016/j.clinbiomech.2014.08.004. Epub 2014 Aug 19.
10
Test-retest reliability of cardinal plane isokinetic hip torque and EMG.
J Electromyogr Kinesiol. 2009 Oct;19(5):e345-52. doi: 10.1016/j.jelekin.2008.07.005. Epub 2008 Oct 8.

引用本文的文献

1
Non-linear interactions among hip and foot biomechanical factors predict foot pronation during walking in women.
Braz J Phys Ther. 2024 Nov-Dec;28(6):101136. doi: 10.1016/j.bjpt.2024.101136. Epub 2024 Nov 14.
2
Dynamic Knee Alignment and Pelvic Balance: Comparison Regarding Gender in Young Soccer Athletes.
Rev Bras Ortop (Sao Paulo). 2021 Apr;56(2):175-180. doi: 10.1055/s-0040-1721361. Epub 2021 Apr 26.
3
Hip passive stiffness is associated with midfoot passive stiffness.
Braz J Phys Ther. 2021 Sep-Oct;25(5):530-535. doi: 10.1016/j.bjpt.2021.02.001. Epub 2021 Feb 13.

本文引用的文献

1
Effects of hip and trunk muscle strengthening on hip function and lower limb kinematics during step-down task.
Clin Biomech (Bristol). 2017 May;44:28-35. doi: 10.1016/j.clinbiomech.2017.02.012. Epub 2017 Feb 27.
2
Between-day reliability of a cluster-based method for multisegment kinematic analysis of the foot-ankle complex.
J Am Podiatr Med Assoc. 2014 Nov;104(6):601-9. doi: 10.7547/8750-7315-104.6.601.
3
Increased unilateral foot pronation affects lower limbs and pelvic biomechanics during walking.
Gait Posture. 2015 Feb;41(2):395-401. doi: 10.1016/j.gaitpost.2014.10.025. Epub 2014 Nov 3.
4
Clinical measures of hip and foot-ankle mechanics as predictors of rearfoot motion and posture.
Man Ther. 2014 Oct;19(5):379-85. doi: 10.1016/j.math.2013.10.003. Epub 2013 Oct 29.
5
A quick and reliable procedure for assessing foot alignment in athletes.
J Am Podiatr Med Assoc. 2013 Sep-Oct;103(5):405-10. doi: 10.7547/1030405.
6
Myofascial force transmission between the latissimus dorsi and gluteus maximus muscles: an in vivo experiment.
J Biomech. 2013 Mar 15;46(5):1003-7. doi: 10.1016/j.jbiomech.2012.11.044. Epub 2013 Feb 8.
7
Forefoot angle determines duration and amplitude of pronation during walking.
Gait Posture. 2013 May;38(1):8-13. doi: 10.1016/j.gaitpost.2012.10.003. Epub 2012 Oct 30.
8
Foot and hip contributions to high frontal plane knee projection angle in athletes: a classification and regression tree approach.
J Orthop Sports Phys Ther. 2012 Dec;42(12):996-1004. doi: 10.2519/jospt.2012.4041. Epub 2012 Sep 18.
9
Proximal and distal kinematics in female runners with patellofemoral pain.
Clin Biomech (Bristol). 2012 May;27(4):366-71. doi: 10.1016/j.clinbiomech.2011.10.005. Epub 2011 Nov 8.
10
Relationship between eccentric hip torque and lower-limb kinematics: gender differences.
J Appl Biomech. 2011 Aug;27(3):223-32. doi: 10.1123/jab.27.3.223.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验