Hurme Edward, Gurarie Eliezer, Greif Stefan, Herrera M L Gerardo, Flores-Martínez José Juan, Wilkinson Gerald S, Yovel Yossi
1Department of Biology, University of Maryland, College Park, MD 20742 USA.
2School of Zoology, Faculty of Life Sciences, Tel-Aviv University, 6997801 Tel-Aviv, Israel.
Mov Ecol. 2019 Jun 14;7:21. doi: 10.1186/s40462-019-0163-7. eCollection 2019.
Multiple methods have been developed to infer behavioral states from animal movement data, but rarely has their accuracy been assessed from independent evidence, especially for location data sampled with high temporal resolution. Here we evaluate the performance of behavioral segmentation methods using acoustic recordings that monitor prey capture attempts.
We recorded GPS locations and ultrasonic audio during the foraging trips of 11 Mexican fish-eating bats, , using miniature bio-loggers. We then applied five different segmentation algorithms (k-means clustering, expectation-maximization and binary clustering, first-passage time, hidden Markov models, and correlated velocity change point analysis) to infer two behavioral states, foraging and commuting, from the GPS data. To evaluate the inference, we independently identified characteristic patterns of biosonar calls ("feeding buzzes") that occur during foraging in the audio recordings. We then compared segmentation methods on how well they correctly identified the two behaviors and if their estimates of foraging movement parameters matched those for locations with buzzes.
While the five methods differed in the median percentage of buzzes occurring during predicted foraging events, or true positive rate (44-75%), a two-state hidden Markov model had the highest median balanced accuracy (67%). Hidden Markov models and first-passage time predicted foraging flight speeds and turn angles similar to those measured at locations with feeding buzzes and did not differ in the number or duration of predicted foraging events.
The hidden Markov model method performed best at identifying fish-eating bat foraging segments; however, first-passage time was not significantly different and gave similar parameter estimates. This is the first attempt to evaluate segmentation methodologies in echolocating bats and provides an evaluation framework that can be used on other species.
已经开发出多种方法从动物运动数据中推断行为状态,但很少有研究从独立证据评估其准确性,特别是对于高时间分辨率采样的位置数据。在此,我们使用监测猎物捕获尝试的声学记录来评估行为分割方法的性能。
我们使用微型生物记录器,在11只墨西哥食鱼蝙蝠的觅食飞行过程中记录了GPS位置和超声波音频。然后,我们应用五种不同的分割算法(k均值聚类、期望最大化和二元聚类、首次通过时间、隐马尔可夫模型和相关速度变化点分析),从GPS数据中推断两种行为状态,即觅食和通勤。为了评估推断结果,我们独立识别了录音中觅食期间发生的生物声纳叫声(“进食嗡嗡声”)的特征模式。然后,我们比较了分割方法在正确识别两种行为方面的表现,以及它们对觅食运动参数的估计是否与有嗡嗡声位置的数据相匹配。
虽然这五种方法在预测觅食事件期间出现的嗡嗡声的中位数百分比(即真阳性率)方面存在差异(44%-75%),但双状态隐马尔可夫模型具有最高的中位数平衡准确率(67%)。隐马尔可夫模型和首次通过时间预测的觅食飞行速度和转弯角度与在有进食嗡嗡声的位置测量的值相似,并且在预测的觅食事件数量或持续时间上没有差异。
隐马尔可夫模型方法在识别食鱼蝙蝠觅食片段方面表现最佳;然而,首次通过时间与之没有显著差异,并且给出了相似的参数估计。这是首次尝试评估回声定位蝙蝠的分割方法,并提供了一个可用于其他物种的评估框架。