Suppr超能文献

分两步预测失真后压缩图像的质量。

Predicting the Quality of Images Compressed after Distortion in Two Steps.

作者信息

Yu Xiangxu, Bampis Christos G, Gupta Praful, Bovik Alan C

出版信息

IEEE Trans Image Process. 2019 Jun 19. doi: 10.1109/TIP.2019.2922850.

Abstract

In a typical communication pipeline, images undergo a series of processing steps that can cause visual distortions before being viewed. Given a high quality reference image, a reference (R) image quality assessment (IQA) algorithm can be applied after compression or transmission. However, the assumption of a high quality reference image is often not fulfilled in practice, thus contributing to less accurate quality predictions when using stand-alone R IQA models. This is particularly common on social media, where hundreds of billions of usergenerated photos and videos containing diverse, mixed distortions are uploaded, compressed, and shared annually on sites like Facebook, YouTube, and Snapchat. The qualities of the pictures that are uploaded to these sites vary over a very wide range. While this is an extremely common situation, the problem of assessing the qualities of compressed images against their precompressed, but often severely distorted (reference) pictures has been little studied. Towards ameliorating this problem, we propose a novel two-step image quality prediction concept that combines NR with R quality measurements. Applying a first stage of NR IQA to determine the possibly degraded quality of the source image yields information that can be used to quality-modulate the R prediction to improve its accuracy. We devise a simple and efficient weighted product model of R and NR stages, which combines a pre-compression NR measurement with a post-compression R measurement. This first-of-a-kind two-step approach produces more reliable objective prediction scores. We also constructed a new, first-of-a-kind dedicated database specialized for the design and testing of two-step IQA models. Using this new resource, we show that twostep approaches yield outstanding performance when applied to compressed images whose original, pre-compression quality covers a wide range of realistic distortion types and severities. The two-step concept is versatile as it can use any desired R and NR components. We are making the source code of a particularly efficient model that we call 2stepQA publicly available at https://github.com/xiangxuyu/2stepQA. We are also providing the dedicated new two-step database free of charge at http://live.ece.utexas.edu/research/twostep/index.html.

摘要

在典型的通信管道中,图像在被查看之前会经历一系列可能导致视觉失真的处理步骤。给定一幅高质量的参考图像,可以在压缩或传输后应用参考(R)图像质量评估(IQA)算法。然而,高质量参考图像的假设在实际中往往无法满足,因此在使用独立的R IQA模型时,质量预测的准确性会降低。这在社交媒体上尤为常见,每年在Facebook、YouTube和Snapchat等网站上都会上传、压缩和分享数千亿张包含各种混合失真的用户生成的照片和视频。上传到这些网站的图片质量差异很大。虽然这是一种极其常见的情况,但针对压缩图像相对于其预压缩但往往严重失真(参考)的图片进行质量评估的问题却很少被研究。为了改善这个问题,我们提出了一种新颖的两步图像质量预测概念,将非参考(NR)与R质量测量相结合。应用第一阶段的NR IQA来确定源图像可能降低的质量,会产生可用于对R预测进行质量调制以提高其准确性的信息。我们设计了一个简单高效的R和NR阶段加权乘积模型,它将预压缩NR测量与后压缩R测量相结合。这种首创的两步方法产生了更可靠的客观预测分数。我们还构建了一个全新的、专门用于两步IQA模型设计和测试的数据库。利用这个新资源,我们表明,当将两步方法应用于原始预压缩质量涵盖各种现实失真类型和严重程度的压缩图像时,会产生出色的性能。两步概念具有通用性,因为它可以使用任何所需的R和NR组件。我们正在https://github.com/xiangxuyu/2stepQA上公开提供我们称为2stepQA的特别高效模型的源代码。我们还在http://live.ece.utexas.edu/research/twostep/index.html上免费提供专门的新两步数据库。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验