Suppr超能文献

基于预恢复图像先验信息的CT图像质量评估

[CT image quality assessment based on prior information of pre-restored images].

作者信息

Gao Q, Zhu M, Li D, Bian Z, Ma J

机构信息

School of Biomedical Engineering, Southern Medical University; Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Guangzhou 510515, China.

出版信息

Nan Fang Yi Ke Da Xue Xue Bao. 2021 Feb 25;41(2):230-237. doi: 10.12122/j.issn.1673-4254.2021.02.10.

Abstract

OBJECTIVE

We propose a CT IQA strategy based on the prior information of pre-restored images (PR-IQA) to improve the performance of IQA models.

OBJECTIVE

We propose a CNN-based no-reference CT IQA strategy using the prior information of image quality features in the image restoration algorithm, which is combined with the original distorted image information into the two CNNs through the pre-restored image and the residual image. Multi-information fusion was used to improve the feature extraction ability and prediction performance of CNN. We built a CT IQA dataset based on spiral CT data published by Mayo Clinic. The performance of PR- IQA was evaluated by calculating the quantitative metrics and statistical tests. The influence of different hyperparameter settings for PR-IQA was analyzed. We then compared PR-IQA with the BASELINE model based on the single CNN to evaluate the original distorted image without reference image and other eight IQA algorithms.

OBJECTIVE

The comparative experiment results showed that the PR-IQA model based on the prior information of 3 different image restoration algorithms (BF, NLM and BM3D) was better than all the tested IQA algorithms. Compared with the BASELINE method, the proposed method showed significantly improved performance, and the mean PLCC was increased by 12.56% and SROCC by 19.95%, and RMSE was decreased by 22.77%.

OBJECTIVE

The proposed PR-IQA method can make full use of the prior information of the image restoration algorithm to effectively predict the quality of CT images.

摘要

目的

我们提出一种基于预恢复图像先验信息的CT图像质量评价(PR-IQA)策略,以提高图像质量评价模型的性能。

目的

我们提出一种基于卷积神经网络(CNN)的无参考CT图像质量评价策略,该策略利用图像恢复算法中图像质量特征的先验信息,通过预恢复图像和残差图像将其与原始失真图像信息合并到两个CNN中。采用多信息融合来提高CNN的特征提取能力和预测性能。我们基于梅奥诊所发布的螺旋CT数据构建了一个CT图像质量评价数据集。通过计算定量指标和进行统计检验来评估PR-IQA的性能。分析了PR-IQA不同超参数设置的影响。然后,我们将PR-IQA与基于单个CNN的基线模型进行比较,以评估无参考图像的原始失真图像以及其他八种图像质量评价算法。

目的

对比实验结果表明,基于3种不同图像恢复算法(BF、NLM和BM3D)先验信息的PR-IQA模型优于所有测试的图像质量评价算法。与基线方法相比,所提方法表现出显著提高的性能,平均皮尔逊线性相关系数(PLCC)提高了12.56%,斯皮尔曼等级相关系数(SROCC)提高了19.95%,均方根误差(RMSE)降低了22.77%。

目的

所提的PR-IQA方法能够充分利用图像恢复算法的先验信息,有效预测CT图像的质量。

相似文献

1
[CT image quality assessment based on prior information of pre-restored images].
Nan Fang Yi Ke Da Xue Xue Bao. 2021 Feb 25;41(2):230-237. doi: 10.12122/j.issn.1673-4254.2021.02.10.
2
Applicability Evaluation of Full-Reference Image Quality Assessment Methods for Computed Tomography Images.
J Digit Imaging. 2023 Dec;36(6):2623-2634. doi: 10.1007/s10278-023-00875-0. Epub 2023 Aug 7.
3
Correlation between subjective and objective assessment of magnetic resonance (MR) images.
Magn Reson Imaging. 2016 Jul;34(6):820-831. doi: 10.1016/j.mri.2016.03.006. Epub 2016 Mar 10.
4
No-reference quality assessment for image-based assessment of economically important tropical woods.
PLoS One. 2020 May 19;15(5):e0233320. doi: 10.1371/journal.pone.0233320. eCollection 2020.
5
Comparison-Based Image Quality Assessment for Selecting Image Restoration Parameters.
IEEE Trans Image Process. 2016 Nov;25(11):5118-5130. doi: 10.1109/TIP.2016.2601783. Epub 2016 Aug 19.
6
Deep learning-driven multi-view multi-task image quality assessment method for chest CT image.
Biomed Eng Online. 2023 Dec 6;22(1):117. doi: 10.1186/s12938-023-01183-y.
7
VCRNet: Visual Compensation Restoration Network for No-Reference Image Quality Assessment.
IEEE Trans Image Process. 2022;31:1613-1627. doi: 10.1109/TIP.2022.3144892. Epub 2022 Feb 1.
8
Blind Deep S3D Image Quality Evaluation via Local to Global Feature Aggregation.
IEEE Trans Image Process. 2017 Oct;26(10):4923-4936. doi: 10.1109/TIP.2017.2725584. Epub 2017 Jul 11.
9
A deep learning-based automatic image quality assessment method for respiratory phase on computed tomography chest images.
Quant Imaging Med Surg. 2024 Mar 15;14(3):2240-2254. doi: 10.21037/qims-23-1273. Epub 2024 Mar 7.

引用本文的文献

1
CMMIQA: a prompt-driven cross-modality multi-organ medical image quality assessment model.
Quant Imaging Med Surg. 2025 Jul 1;15(7):6326-6339. doi: 10.21037/qims-2025-127. Epub 2025 Jun 30.
2
Quality assessment of abdominal CT images: an improved ResNet algorithm with dual-attention mechanism.
Am J Transl Res. 2024 Jul 15;16(7):3099-3107. doi: 10.62347/WKNS8633. eCollection 2024.

本文引用的文献

1
Imaging protocols for CT chest: A recommendation.
Indian J Radiol Imaging. 2019 Jul-Sep;29(3):236-246. doi: 10.4103/ijri.IJRI_34_19. Epub 2019 Oct 30.
2
Comparison of Objective Image Quality Metrics to Expert Radiologists' Scoring of Diagnostic Quality of MR Images.
IEEE Trans Med Imaging. 2020 Apr;39(4):1064-1072. doi: 10.1109/TMI.2019.2930338. Epub 2019 Sep 16.
3
Predicting the Quality of Images Compressed after Distortion in Two Steps.
IEEE Trans Image Process. 2019 Jun 19. doi: 10.1109/TIP.2019.2922850.
4
Two-Stream Convolutional Networks for Blind Image Quality Assessment.
IEEE Trans Image Process. 2019 May;28(5):2200-2211. doi: 10.1109/TIP.2018.2883741. Epub 2018 Nov 28.
5
Ultra-low-dose CT image denoising using modified BM3D scheme tailored to data statistics.
Med Phys. 2019 Jan;46(1):190-198. doi: 10.1002/mp.13252. Epub 2018 Nov 19.
6
Robust Low-Dose CT Sinogram Preprocessing via Exploiting Noise-Generating Mechanism.
IEEE Trans Med Imaging. 2017 Dec;36(12):2487-2498. doi: 10.1109/TMI.2017.2767290.
8
A Simple Low-dose X-ray CT Simulation from High-dose Scan.
IEEE Trans Nucl Sci. 2015 Oct;62(5):2226-2233. doi: 10.1109/TNS.2015.2467219. Epub 2015 Sep 23.
9
Gradient Magnitude Similarity Deviation: A Highly Efficient Perceptual Image Quality Index.
IEEE Trans Image Process. 2014 Feb;23(2):684-95. doi: 10.1109/TIP.2013.2293423.
10
No-reference image quality assessment in the spatial domain.
IEEE Trans Image Process. 2012 Dec;21(12):4695-708. doi: 10.1109/TIP.2012.2214050. Epub 2012 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验