IEEE Trans Image Process. 2017 Jun;26(6):2957-2971. doi: 10.1109/TIP.2017.2685941. Epub 2017 Mar 22.
Being able to automatically predict digital picture quality, as perceived by human observers, has become important in many applications where humans are the ultimate consumers of displayed visual information. Standard dynamic range (SDR) images provide 8 b/color/pixel. High dynamic range (HDR) images, which are usually created from multiple exposures of the same scene, can provide 16 or 32 b/color/pixel, but must be tonemapped to SDR for display on standard monitors. Multi-exposure fusion techniques bypass HDR creation, by fusing the exposure stack directly to SDR format while aiming for aesthetically pleasing luminance and color distributions. Here, we describe a new no-reference image quality assessment (NR IQA) model for HDR pictures that is based on standard measurements of the bandpass and on newly conceived differential natural scene statistics (NSS) of HDR pictures. We derive an algorithm from the model which we call the HDR IMAGE GRADient-based Evaluator. NSS models have previously been used to devise NR IQA models that effectively predict the subjective quality of SDR images, but they perform significantly worse on tonemapped HDR content. Toward ameliorating this we make here the following contributions: 1) we design HDR picture NR IQA models and algorithms using both standard space-domain NSS features as well as novel HDR-specific gradient-based features that significantly elevate prediction performance; 2) we validate the proposed models on a large-scale crowdsourced HDR image database; and 3) we demonstrate that the proposed models also perform well on legacy natural SDR images. The software is available at: http://live.ece.utexas.edu/research/Quality/higradeRelease.zip.
能够自动预测人类观察者感知的数字图像质量,在许多人类是显示视觉信息最终消费者的应用中变得非常重要。标准动态范围 (SDR) 图像提供 8 b/色/像素。高动态范围 (HDR) 图像通常由同一场景的多次曝光创建,可以提供 16 或 32 b/色/像素,但必须进行色调映射才能在标准显示器上显示 SDR。多曝光融合技术通过直接将曝光堆栈融合到 SDR 格式,同时追求令人愉悦的亮度和颜色分布,从而绕过 HDR 创作。在这里,我们描述了一种新的 HDR 图像无参考图像质量评估 (NR IQA) 模型,该模型基于标准的带宽测量和新构思的 HDR 图像的差分自然场景统计 (NSS)。我们从该模型中推导出一种算法,我们称之为 HDR 图像梯度评估器。NSS 模型以前曾被用于设计有效预测 SDR 图像主观质量的 NR IQA 模型,但它们在色调映射的 HDR 内容上的性能明显更差。为了改善这一点,我们做出了以下贡献:1)我们使用标准的空间域 NSS 特征以及新颖的 HDR 特定的基于梯度的特征来设计 HDR 图像 NR IQA 模型和算法,这显著提高了预测性能;2)我们在大规模众包 HDR 图像数据库上验证了所提出的模型;3)我们还证明了所提出的模型在传统的自然 SDR 图像上也能很好地工作。该软件可在以下网址获取:http://live.ece.utexas.edu/research/Quality/higradeRelease.zip。