Suppr超能文献

具有应变 MTJ 的概率型突触用于尖峰神经网络。

A Probabilistic Synapse With Strained MTJs for Spiking Neural Networks.

出版信息

IEEE Trans Neural Netw Learn Syst. 2020 Apr;31(4):1113-1123. doi: 10.1109/TNNLS.2019.2917819. Epub 2019 Jun 18.

Abstract

Spiking neural networks (SNNs) are of interest for applications for which conventional computing suffers from the nearly insurmountable memory-processor bottleneck. This paper presents a stochastic SNN architecture that is based on specialized logic-in-memory synaptic units to create a unique processing system that offers massively parallel processing power. Our proposed synaptic unit consists of strained magnetic tunnel junction (MTJ) devices and transistors. MTJs in our synapse are dual purpose, used as both random bit generators and as general-purpose memory. Our neurons are modeled as integrate-and-fire components with thresholding and refraction. Our circuit is implemented using CMOS 28-nm technology that is compatible with the MTJ technology. Our design shows that the required area for the proposed synapse is only [Formula: see text]. When idle, the synapse consumes 675 pW. When firing, the energy required to propagate a spike is 8.87 fJ. We then demonstrate an SNN that learns (without supervision) and classifies handwritten digits of the MNIST database. Simulation results show that our network presents high classification efficiency even in the presence of fabrication variability.

摘要

尖峰神经网络(SNN)对于那些传统计算受到几乎无法克服的存储-处理器瓶颈限制的应用很感兴趣。本文提出了一种基于特殊的基于内存的突触单元的随机 SNN 架构,以创建一个提供大规模并行处理能力的独特处理系统。我们提出的突触单元由应变磁性隧道结(MTJ)器件和晶体管组成。我们的突触中的 MTJs 具有双重用途,既可用作随机比特发生器,也可用作通用存储器。我们的神经元被建模为具有阈值和折射的积分和点火组件。我们的电路使用与 MTJ 技术兼容的 28nm CMOS 技术实现。我们的设计表明,所提出的突触所需的面积仅为[公式:见正文]。空闲时,突触消耗 675pW。当触发时,传播尖峰所需的能量为 8.87fJ。然后,我们展示了一个无需监督即可学习和分类 MNIST 数据库手写数字的 SNN。仿真结果表明,即使在存在制造变异性的情况下,我们的网络也具有很高的分类效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验