Wang Xiyang, Pan Ziye, Chu Xuefeng, Huang Keke, Cong Yingge, Cao Rui, Sarangi Ritimukta, Li Liping, Li Guangshe, Feng Shouhua
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
Jilin Provincial Key Laboratory of Architectural Electricity & Comprehensive Energy Saving, School of Electrical and Electronic Information Engineering, Jilin Jianzhu University, Changchun, 130118, P. R. China.
Angew Chem Int Ed Engl. 2019 Aug 19;58(34):11720-11725. doi: 10.1002/anie.201905543. Epub 2019 Jul 18.
Surface lattice oxygen in transition-metal oxides plays a vital role in catalytic processes. Mastering activation of surface lattice oxygen and identifying the activation mechanism are crucial for the development and design of advanced catalysts. A strategy is now developed to create a spinel Co O /perovskite La Sr CoO interface by in situ reconstruction of the surface Sr enrichment region in perovskite LSC to activate surface lattice oxygen. XAS and XPS confirm that the regulated chemical interface optimizes the hybridized orbital between Co 3d and O 2p and triggers more electrons in oxygen site of LSC transferred into lattice of Co O , leading to more inactive O transformed into active O . Furthermore, the activated Co O /LSC exhibits the best catalytic activities for CO oxidation, oxygen evolution, and oxygen reduction. This work would provide a fundamental understanding to explain the activation mechanism of surface oxygen sites.
过渡金属氧化物中的表面晶格氧在催化过程中起着至关重要的作用。掌握表面晶格氧的活化并确定其活化机制对于先进催化剂的开发和设计至关重要。目前已开发出一种策略,通过原位重构钙钛矿LSC中表面Sr富集区域来创建尖晶石CoO /钙钛矿LaSrCoO界面,以活化表面晶格氧。X射线吸收光谱(XAS)和X射线光电子能谱(XPS)证实,调控后的化学界面优化了Co 3d和O 2p之间的杂化轨道,并促使LSC氧位点上更多电子转移到CoO 晶格中,从而使更多非活性O转变为活性O。此外,活化后的CoO/LSC对CO氧化、析氧和氧还原表现出最佳的催化活性。这项工作将为解释表面氧位点的活化机制提供基本认识。