Suppr超能文献

用于高精度立体定向放射治疗计划中MRI畸变校正评估的虚拟体模方法

Virtual phantom methodology for assessment of MRI distortion correction in high-precision stereotactic radiosurgery treatment planning.

作者信息

Belloeil-Marrane Tristan, Gutierrez Adrian, Boussaer Marlies, Teixeira Cristina, Gevaert Thierry, De Ridder Mark

机构信息

Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium.

出版信息

Front Oncol. 2025 May 21;15:1530332. doi: 10.3389/fonc.2025.1530332. eCollection 2025.

Abstract

INTRODUCTION

The accuracy of stereotactic treatment planning is primarily limited by the least accurate process in the whole chain of events, and is particularly important in cranial radiosurgery. Ameliorating this process can improve treatment targeting, providing additional reliability for these indications. Quality assurance (QA) in radiotherapy is often performed on the dose delivery and planning section rather than the localization. Magnetic Resonance Images (MRI) are notably subject to distortions, due to the nonlinearity of gradient fields, potentially source of geometric errors. This study aimed to analyze the impact of a patient-specific algorithm, rather than manufacturer-specific, to correct spatial distortion in cranial MRI by using a novel software-only paradigm.

MATERIAL AND METHODS

An unbiased simulated T1-Weighted MRI validated dataset is utilized to create a synthetic CT (sCT). By introducing controlled distortion in simulated datasets, we can evaluate the influence of noise and intensity non-uniformity ("RF") ranging from 0 to 9% noise and 0 to 40% RF. These MRIs were corrected using the sCT as base modality for distortion correction. To evaluate the impact of the distortion correction, each corrected/non-corrected image set was compared to the unbiased MRI using Root-mean-square-error (RMSE) as a full-image reference comparison metric.

RESULTS

The distortion correction allows for an improvement based on the RMSE correlation between baseline and distorted MRIs. The amelioration of average RMSE in corrected versus non-corrected MRI is up to 42.22% for the most distorted datasets.

CONCLUSION

The distortion correction results show a proportional improvement with increased noise and intensity non-uniformity. This provides additional robustness and reliability to the accuracy of SRS treatment planning using MR T1-W sequences as imaging reference for target definition and organ delineation, remaining consistent independently from the variability of the non-uniformity gradient values. This virtual phantom methodology primarily aims to provide a simple/robust evaluation metric in radiotherapy for MR distortion correction solutions, providing an additional/complement QA procedure to dedicated hardware phantoms, comparatively costly in time and resources. This approach is also designed to assist with an easily implementable secondary QA for validation during commissioning of distortion correction software, focusing on this feature, to better isolate and identify sources of geometric errors resulting from MR distortions.

摘要

引言

立体定向治疗计划的准确性主要受整个事件链中最不准确的过程限制,在颅脑放射外科中尤为重要。改进这一过程可改善治疗靶点定位,为这些适应症提供更高的可靠性。放射治疗中的质量保证(QA)通常在剂量输送和计划部分进行,而非定位部分。由于梯度场的非线性,磁共振图像(MRI)明显容易出现失真,这可能是几何误差的来源。本研究旨在分析一种针对患者的算法(而非特定制造商的算法)通过仅使用新型软件范式来校正颅脑MRI空间失真的影响。

材料与方法

利用一个无偏模拟T1加权MRI验证数据集创建合成CT(sCT)。通过在模拟数据集中引入可控失真,我们可以评估噪声和强度不均匀性(“RF”)在0至9%噪声和0至40%RF范围内的影响。这些MRI以sCT作为失真校正的基础模态进行校正。为评估失真校正的影响,使用均方根误差(RMSE)作为全图像参考比较指标,将每个校正/未校正的图像集与无偏MRI进行比较。

结果

基于基线MRI和失真MRI之间的RMSE相关性,失真校正带来了改善。对于失真最严重的数据集,校正后与未校正的MRI相比,平均RMSE的改善高达42.22%。

结论

失真校正结果显示,随着噪声和强度不均匀性增加,有相应的改善。这为使用MR T1-W序列作为靶区定义和器官勾画的成像参考的立体定向放射治疗(SRS)治疗计划的准确性提供了更高的稳健性和可靠性,与不均匀梯度值的变化无关,保持一致。这种虚拟体模方法主要旨在为放射治疗中的MR失真校正解决方案提供一个简单/稳健的评估指标,为专用硬件体模提供额外的/补充的QA程序,后者在时间和资源方面成本较高。此方法还旨在协助在失真校正软件调试期间进行易于实施的二次QA以进行验证,重点关注此功能,以更好地隔离和识别由MR失真导致的几何误差来源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a0a/12133485/0312ff650d67/fonc-15-1530332-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验