Suppr超能文献

从纵向肿瘤样本推断系统发育树。

CALDER: Inferring Phylogenetic Trees from Longitudinal Tumor Samples.

机构信息

Department of Computer Science, Princeton University, Princeton, NJ 08540, USA.

Department of Computer Science, Princeton University, Princeton, NJ 08540, USA; Department of Computer Science, Brown University, Providence, RI 02912, USA.

出版信息

Cell Syst. 2019 Jun 26;8(6):514-522.e5. doi: 10.1016/j.cels.2019.05.010. Epub 2019 Jun 19.

Abstract

Longitudinal DNA sequencing of cancer patients yields insight into how tumors evolve over time or in response to treatment. However, sequencing data from bulk tumor samples often have considerable ambiguity in clonal composition, complicating the inference of ancestral relationships between clones. We introduce Cancer Analysis of Longitudinal Data through Evolutionary Reconstruction (CALDER), an algorithm to infer phylogenetic trees from longitudinal bulk DNA sequencing data. CALDER explicitly models a longitudinally observed phylogeny incorporating constraints that longitudinal sampling imposes on phylogeny reconstruction. We show on simulated bulk tumor data that longitudinal constraints substantially reduce ambiguity in phylogeny reconstruction and that CALDER outperforms existing methods that do not leverage this longitudinal information. On real data from two chronic lymphocytic leukemia patients, we find that CALDER reconstructs more plausible and parsimonious phylogenies than existing methods, with CALDER phylogenies containing fewer tumor clones per sample. CALDER's use of longitudinal information will be advantageous in further studies of tumor heterogeneity and evolution.

摘要

对癌症患者进行纵向 DNA 测序可以深入了解肿瘤随时间推移或对治疗的反应如何演变。然而,来自肿瘤样本的测序数据在克隆组成方面通常存在很大的不确定性,这使得推断克隆之间的祖先关系变得复杂。我们引入了通过进化重建进行纵向数据分析(CALDER),这是一种从纵向批量 DNA 测序数据中推断系统发育树的算法。CALDER 从纵向观察到的系统发育树出发,明确地进行建模,同时考虑到纵向采样对系统发育重建施加的约束。我们在模拟的肿瘤批量数据上表明,纵向约束大大降低了系统发育重建的不确定性,并且 CALDER 优于那些没有利用这种纵向信息的现有方法。在来自两名慢性淋巴细胞白血病患者的真实数据上,我们发现,CALDER 构建的系统发育树比现有方法更合理且更简洁,CALDER 系统发育树中每个样本的肿瘤克隆数量更少。CALDER 对纵向信息的使用将有助于进一步研究肿瘤异质性和进化。

相似文献

1
CALDER: Inferring Phylogenetic Trees from Longitudinal Tumor Samples.从纵向肿瘤样本推断系统发育树。
Cell Syst. 2019 Jun 26;8(6):514-522.e5. doi: 10.1016/j.cels.2019.05.010. Epub 2019 Jun 19.
6
Phylogenetic Copy-Number Factorization of Multiple Tumor Samples.多个肿瘤样本的系统发育拷贝数分解
J Comput Biol. 2018 Jul;25(7):689-708. doi: 10.1089/cmb.2017.0253. Epub 2018 Apr 16.
10
PhyDOSE: Design of follow-up single-cell sequencing experiments of tumors.PhyDOSE:肿瘤单细胞测序实验的后续设计。
PLoS Comput Biol. 2020 Oct 1;16(10):e1008240. doi: 10.1371/journal.pcbi.1008240. eCollection 2020 Oct.

引用本文的文献

9
Orchard: Building large cancer phylogenies using stochastic combinatorial search.奥查德:使用随机组合搜索构建大型癌症系统发育树。
PLoS Comput Biol. 2024 Dec 30;20(12):e1012653. doi: 10.1371/journal.pcbi.1012653. eCollection 2024 Dec.

本文引用的文献

1
Inferring parsimonious migration histories for metastatic cancers.推断转移性癌症的简约迁移史。
Nat Genet. 2018 May;50(5):718-726. doi: 10.1038/s41588-018-0106-z. Epub 2018 Apr 26.
10
Optimizing cancer genome sequencing and analysis.优化癌症基因组测序与分析。
Cell Syst. 2015 Sep 23;1(3):210-223. doi: 10.1016/j.cels.2015.08.015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验