Suppr超能文献

在肝细胞癌模型中,S-腺苷甲硫氨酸生物合成及其代谢减少,可被一种腺苷衍生物恢复。

Diminished S-adenosylmethionine biosynthesis and its metabolism in a model of hepatocellular carcinoma is recuperated by an adenosine derivative.

机构信息

Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.

出版信息

Cancer Biol Ther. 2020;21(1):81-94. doi: 10.1080/15384047.2019.1665954. Epub 2019 Sep 25.

Abstract

S-adenosylmethionine (SAM), biosynthesis from methionine and ATP, is markedly decreased in hepatocellularular carcinoma (HCC) for a diminution in ATP levels, and the down regulation of the liver specific MAT1a enzyme. Its metabolic activity is very important in the transmethylation reactions, the methionine cycle, the biosynthesis of glutathione (GSH) and the polyamine pathway, which are markedly affected in the HCC. The chemo-preventive effect of IFC305 in HCC induced by DEN, and the increase of ATP and SAM in CCl-induced cirrhosis have been previously demonstrated. The aim of this work was to test whether this chemo-preventive effect is mediated by the induction of SAM biosynthesis and its metabolic flow. SAM hepatic levels and the methionine cycle were recovered with IFC305 treatment, restoring transmethylation and transsulfuration activities. IFC305 treatment, increased MAT1a levels and decrease MAT2a levels through modulation of their post-transcriptional regulation. This occurred through the binding of the AUF1 (binding factor 1 AU-rich sites) and HuR (human antigen R) ribonucleoproteins to and messenger RNAs, which maintained their nuclear localization. Finally, the compound inhibited the polyamine pathway favoring the recuperation of the normal methionine and one carbon cycle recuperating the metabolic flow of methionine, which probably facilitated its HCC chemo-preventive effect.

摘要

S-腺苷甲硫氨酸(SAM)由蛋氨酸和 ATP 合成而来,由于 HCC 中 ATP 水平降低和肝脏特异性 MAT1a 酶下调,其生物合成明显减少。其代谢活性在转甲基反应、蛋氨酸循环、谷胱甘肽(GSH)和多胺途径的生物合成中非常重要,这些在 HCC 中受到明显影响。IFC305 对 DEN 诱导的 HCC 的化学预防作用以及 CCl 诱导的肝硬化中 ATP 和 SAM 的增加已得到先前证实。本工作旨在测试这种化学预防作用是否通过诱导 SAM 生物合成及其代谢流来介导。IFC305 处理可恢复 SAM 肝水平和蛋氨酸循环,恢复转甲基和转硫基活性。IFC305 处理通过调节其转录后调节增加了 MAT1a 水平并降低了 MAT2a 水平。这是通过 AUF1(富含 AU 结合因子 1 的结合因子)和 HuR(人类抗原 R)核糖核蛋白与 和 mRNA 的结合而发生的,这些 RNA 保持其核定位。最后,该化合物抑制多胺途径,有利于恢复正常的蛋氨酸和一碳循环,恢复蛋氨酸的代谢流,这可能有助于其 HCC 化学预防作用。

相似文献

2
3
HuR/methyl-HuR and AUF1 regulate the MAT expressed during liver proliferation, differentiation, and carcinogenesis.
Gastroenterology. 2010 May;138(5):1943-53. doi: 10.1053/j.gastro.2010.01.032. Epub 2010 Jan 25.
6
Methionine adenosyltransferases in liver cancer.
World J Gastroenterol. 2019 Aug 21;25(31):4300-4319. doi: 10.3748/wjg.v25.i31.4300.
10
Role of methionine adenosyltransferase and S-adenosylmethionine in alcohol-associated liver cancer.
Alcohol. 2005 Apr;35(3):227-34. doi: 10.1016/j.alcohol.2005.03.011.

引用本文的文献

1
IFC-305, an adenosine derivative, inhibits the osteolytic metastases of triple-negative breast cancer.
J Bone Oncol. 2025 Jul 22;54:100704. doi: 10.1016/j.jbo.2025.100704. eCollection 2025 Oct.
2
Sulfide regulation and catabolism in health and disease.
Signal Transduct Target Ther. 2025 May 30;10(1):174. doi: 10.1038/s41392-025-02231-w.
3
Inhibition of liver cancer cell growth by metabolites S-adenosylmethionine and nicotinic acid originating from liver progenitor cells.
J Gastroenterol. 2025 Jun;60(6):754-769. doi: 10.1007/s00535-025-02226-y. Epub 2025 Feb 28.
4
The Lysophospholipase PNPLA7 Controls Hepatic Choline and Methionine Metabolism.
Biomolecules. 2023 Mar 3;13(3):471. doi: 10.3390/biom13030471.
5
Correlation between amino acid metabolism and self-renewal of cancer stem cells: Perspectives in cancer therapy.
World J Stem Cells. 2022 Apr 26;14(4):267-286. doi: 10.4252/wjsc.v14.i4.267.
7
8
Role of AUF1 in modulating the proliferation, migration and senescence of skin cells.
Exp Ther Med. 2022 Jan;23(1):45. doi: 10.3892/etm.2021.10967. Epub 2021 Nov 14.
10
Methionine metabolism in chronic liver diseases: an update on molecular mechanism and therapeutic implication.
Signal Transduct Target Ther. 2020 Dec 4;5(1):280. doi: 10.1038/s41392-020-00349-7.

本文引用的文献

1
Improved S-adenosylmethionine and glutathione biosynthesis by heterologous expression of an ATP6 gene in Candida utilis.
J Basic Microbiol. 2018 Oct;58(10):875-882. doi: 10.1002/jobm.201800151. Epub 2018 Jul 31.
2
Deregulation of methionine metabolism as determinant of progression and prognosis of hepatocellular carcinoma.
Transl Gastroenterol Hepatol. 2018 Jun 29;3:36. doi: 10.21037/tgh.2018.06.04. eCollection 2018.
3
The old and new biochemistry of polyamines.
Biochim Biophys Acta Gen Subj. 2018 Sep;1862(9):2053-2068. doi: 10.1016/j.bbagen.2018.06.004. Epub 2018 Jun 8.
4
Obesity linking to hepatocellular carcinoma: A global view.
Biochim Biophys Acta Rev Cancer. 2018 Apr;1869(2):97-102. doi: 10.1016/j.bbcan.2017.12.006. Epub 2018 Jan 31.
5
S-adenosyl-methionine (SAM) alters the transcriptome and methylome and specifically blocks growth and invasiveness of liver cancer cells.
Oncotarget. 2017 Dec 5;8(67):111866-111881. doi: 10.18632/oncotarget.22942. eCollection 2017 Dec 19.
6
Polyamines and Cancer.
Methods Mol Biol. 2018;1694:469-488. doi: 10.1007/978-1-4939-7398-9_39.
7
Epigenetic Effects of an Adenosine Derivative in a Wistar Rat Model of Liver Cirrhosis.
J Cell Biochem. 2018 Jan;119(1):401-413. doi: 10.1002/jcb.26192. Epub 2017 Jul 4.
10
Targeting the multifaceted HuR protein, benefits and caveats.
Curr Drug Targets. 2015;16(5):499-515. doi: 10.2174/1389450116666150223163632.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验