Baer M F, Reilly R M, McCorkle G M, Hai T Y, Altman S, RajBhandary U L
Department of Biology, Yale University, New Haven, Connecticut 06520.
J Biol Chem. 1988 Feb 15;263(5):2344-51.
We have generated mutants of M1 RNA, the catalytic subunit of Escherichia coli RNaseP, and have analyzed their properties in vitro and in vivo. The mutations, A333----C333, A334----U334, and A333 A334----C333 U334 are within the sequence UGAAU which is complementary to the GT psi CR sequence found in loop IV of all E. coli tRNAs. We have examined: 1) whether the mutant M1 RNAs are active in processing wild type tRNA precursors and 2) whether they can restore the processing defect in mutant tRNA precursors with changes within the GT psi CR sequence. As substrates for in vitro studies we used wild type E. coli SuIII tRNA(Tyr) precursor, and pTyrA54, a mutant tRNA precursor with a base change that could potentially complement the U334 mutation in M1 RNA. The C333 mutation had no effect on activity of M1 RNA on wild type pTyr. The U334 mutant M1 RNA, on the other hand, had a much lower activity on wild type pTyr. However, use of pTyrA54 as substrate instead of wild type pTyr did not restore the activity of the U334 mutant M1 RNA. These results suggest that interactions via base pairing between nucleotides 331-335 of M1 RNA and the GT psi CG of pTyr are probably not essential for cleavage of these tRNA precursors by M1 RNA. For assays of in vivo function, we examined the ability of mutant M1 RNAs to complement a ts mutation in the protein component of RNaseP in FS101, a recA- derivative of E. coli strain A49. In contrast to wild type M1 RNA, which complements the ts mutation when it is overproduced, neither the C333 nor the U334 mutant M1 RNAs was able to do so.
我们构建了大肠杆菌核糖核酸酶P的催化亚基M1 RNA的突变体,并在体外和体内分析了它们的特性。这些突变,A333→C333、A334→U334以及A333 A334→C333 U334,位于UGAAU序列内,该序列与在所有大肠杆菌tRNA的环IV中发现的GTψCR序列互补。我们研究了:1)突变的M1 RNA在加工野生型tRNA前体时是否具有活性,以及2)它们是否能够恢复GTψCR序列内发生变化的突变tRNA前体的加工缺陷。作为体外研究的底物,我们使用了野生型大肠杆菌SuIII tRNA(Tyr)前体和pTyrA54,后者是一种突变的tRNA前体,其碱基变化可能潜在地互补M1 RNA中的U334突变。C333突变对M1 RNA对野生型pTyr的活性没有影响。另一方面,U334突变的M1 RNA对野生型pTyr的活性要低得多。然而,使用pTyrA54作为底物而非野生型pTyr并不能恢复U334突变的M1 RNA的活性。这些结果表明,M1 RNA的核苷酸331 - 335与pTyr的GTψCG之间通过碱基配对的相互作用可能对于M1 RNA切割这些tRNA前体并非必不可少。为了进行体内功能测定,我们检测了突变的M1 RNA在大肠杆菌菌株A49的recA - 衍生物FS101中互补核糖核酸酶P蛋白质组分中的温度敏感突变的能力。与野生型M1 RNA不同,野生型M1 RNA在过量表达时能够互补温度敏感突变,而C333和U334突变的M1 RNA均无法做到这一点。