Suppr超能文献

前体tRNA两侧序列的变化会影响核糖核酸酶P的切割特异性。

Sequence changes in both flanking sequences of a pre-tRNA influence the cleavage specificity of RNase P.

作者信息

Krupp G, Kahle D, Vogt T, Char S

机构信息

Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität, Kiel, F.R.G.

出版信息

J Mol Biol. 1991 Feb 20;217(4):637-48. doi: 10.1016/0022-2836(91)90522-8.

Abstract

The cleavage specificities of the RNase P holoenzymes from Escherichia coli and the yeast Schizosaccharomyces pombe and of the catalytic M1 RNA from E. coli were analyzed in 5'-processing experiments using a yeast serine pre-tRNA with mutations in both flanking sequences. The template DNAs were obtained by enzymatic reactions in vitro and transcribed with phage SP6 or T7 RNA polymerase. The various mutations did not alter the cleavage specificity of the yeast RNase P holoenzyme; cleavage always occurred predominantly at position G + 1, generating the typical seven base-pair acceptor stem. In contrast, the specificity of the prokaryotic RNase P activities, i.e. the catalytic M1 RNA and the RNase P holoenzyme from E. coli, was influenced by some of the mutated pre-tRNA substrates, which resulted in an unusual cleavage pattern, generating extended acceptor stems. The bases G - 1 and C + 73, forming the eighth base pair in these extended acceptor stems, were an important motif in promoting the unusual cleavage pattern. It was found only in some natural pre-tRNAs, including tRNA(SeCys) from E. coli, and tRNAs(His) from bacteria and chloroplasts. Also, the corresponding mature tRNAs in vivo contain an eight base pair acceptor stem. The presence of the CCA sequence at the 3' end of the tRNA moiety is known to enhance the cleavage efficiency with the catalytic M1 RNA. Surprisingly, the presence or absence of this sequence in two of our substrate mutants drastically altered the cleavage specificity of M1 RNA and of the E. coli holoenzyme, respectively. Possible reasons for the different cleavage specificities of the enzymes, the influence of sequence alterations and the importance of stacking forces in the acceptor stems are discussed.

摘要

在5'加工实验中,使用侧翼序列均有突变的酵母丝氨酸前体tRNA,分析了来自大肠杆菌和裂殖酵母的核糖核酸酶P全酶以及来自大肠杆菌的催化性M1 RNA的切割特异性。模板DNA通过体外酶促反应获得,并用噬菌体SP6或T7 RNA聚合酶转录。各种突变并未改变酵母核糖核酸酶P全酶的切割特异性;切割总是主要发生在G + 1位置,产生典型的七个碱基对的受体茎。相比之下,原核核糖核酸酶P活性,即催化性M1 RNA和来自大肠杆菌的核糖核酸酶P全酶的特异性,受到一些突变的前体tRNA底物的影响,这导致了异常的切割模式,产生了延长的受体茎。在这些延长的受体茎中形成第八个碱基对的G - 1和C + 73碱基是促进异常切割模式的重要基序。它仅在一些天然前体tRNA中发现,包括来自大肠杆菌的tRNA(SeCys)以及来自细菌和叶绿体的tRNA(His)。此外,体内相应的成熟tRNA含有八个碱基对的受体茎。已知tRNA部分3'端存在CCA序列可提高与催化性M1 RNA的切割效率。令人惊讶的是,我们的两个底物突变体中该序列的存在与否分别极大地改变了M1 RNA和大肠杆菌全酶的切割特异性。讨论了酶切割特异性不同的可能原因、序列改变的影响以及受体茎中堆积力的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验