Suppr超能文献

RNA 聚合酶 II(RNAP II)相关因子被招募到 tRNA 基因座,这表明在酵母中,RNAP II 和 RNAP III 介导的转录存在重叠。

RNA polymerase II (RNAP II)-associated factors are recruited to tRNA loci, revealing that RNAP II- and RNAP III-mediated transcriptions overlap in yeast.

机构信息

Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Roma 00133, Italy.

出版信息

J Biol Chem. 2019 Aug 16;294(33):12349-12358. doi: 10.1074/jbc.RA119.008529. Epub 2019 Jun 24.

Abstract

In yeast (), the synthesis of tRNAs by RNA polymerase III (RNAP III) down-regulates the transcription of the nearby RNAP II-transcribed genes by a mechanism that is poorly understood. To clarify the basis of this tRNA gene-mediated (TGM) silencing, here, conducting a bioinformatics analysis of available ChIP-chip and ChIP-sequencing genomic data from yeast, we investigated whether the RNAP III transcriptional machinery can recruit protein factors required for RNAP II transcription. An analysis of 46 genome-wide protein-density profiles revealed that 12 factors normally implicated in RNAP II-mediated gene transcription are more enriched at tRNA than at mRNA loci. These 12 factors typically have RNA-binding properties, participate in the termination stage of the RNAP II transcription, and preferentially localize to the tRNA loci by a mechanism that apparently is based on the RNAP III transcription level. The factors included two kinases of RNAP II (Bur1 and Ctk1), a histone demethylase (Jhd2), and a mutated form of a nucleosome-remodeling factor (Spt6) that have never been reported to be recruited to tRNA loci. Moreover, we show that the expression levels of RNAP II-transcribed genes downstream of tRNA loci correlate with the distance from the tRNA gene by a mechanism that depends on their orientation. These results are consistent with the notion that pre-tRNAs recruit RNAP II-associated factors, thereby reducing the availability of these factors for RNAP II transcription and contributing, at least in part, to the TGM-silencing mechanism.

摘要

在酵母中,RNA 聚合酶 III(RNAP III)合成 tRNA 会通过一种机制下调附近由 RNAP II 转录的基因的转录,但这种机制还不太清楚。为了阐明这种 tRNA 基因介导的(TGM)沉默的基础,在这里,我们通过对酵母中可用的 ChIP-chip 和 ChIP-sequencing 基因组数据进行生物信息学分析,研究了 RNAP III 转录机制是否可以招募 RNAP II 转录所需的蛋白质因子。对 46 个全基因组蛋白密度图谱的分析表明,12 个通常与 RNAP II 介导的基因转录有关的因子在 tRNA 上比在 mRNA 上更为丰富。这 12 个因子通常具有 RNA 结合特性,参与 RNAP II 转录的终止阶段,并且通过一种显然基于 RNAP III 转录水平的机制优先定位于 tRNA 位点。这些因子包括两个 RNAP II 的激酶(Bur1 和 Ctk1)、一个组蛋白去甲基酶(Jhd2)和一个核小体重塑因子的突变形式(Spt6),它们从未被报道过被招募到 tRNA 位点。此外,我们还表明,tRNA 位点下游的 RNAP II 转录基因的表达水平与 tRNA 基因的距离相关,其机制依赖于它们的取向。这些结果与前 tRNA 招募 RNAP II 相关因子的观点一致,从而减少了这些因子对 RNAP II 转录的可用性,并在一定程度上促成了 TGM 沉默机制。

相似文献

2
Silencing near tRNA genes is nucleosome-mediated and distinct from boundary element function.
Gene. 2013 Aug 15;526(1):7-15. doi: 10.1016/j.gene.2013.05.016. Epub 2013 May 23.
3
Spt6 Association with RNA Polymerase II Directs mRNA Turnover During Transcription.
Mol Cell. 2018 Jun 21;70(6):1054-1066.e4. doi: 10.1016/j.molcel.2018.05.020.
4
Maf1, repressor of tRNA transcription, is involved in the control of gluconeogenetic genes in Saccharomyces cerevisiae.
Gene. 2013 Aug 15;526(1):16-22. doi: 10.1016/j.gene.2013.04.055. Epub 2013 May 5.
5
The transcriptional coactivator PC4/Sub1 has multiple functions in RNA polymerase II transcription.
EMBO J. 2005 Mar 9;24(5):1009-20. doi: 10.1038/sj.emboj.7600575. Epub 2005 Feb 3.
6
Histone deacetylases and phosphorylated polymerase II C-terminal domain recruit Spt6 for cotranscriptional histone reassembly.
Mol Cell Biol. 2014 Nov 15;34(22):4115-29. doi: 10.1128/MCB.00695-14. Epub 2014 Sep 2.
7
A feed forward circuit comprising Spt6, Ctk1 and PAF regulates Pol II CTD phosphorylation and transcription elongation.
Nucleic Acids Res. 2014 Jan;42(2):870-81. doi: 10.1093/nar/gkt1003. Epub 2013 Oct 25.
10

引用本文的文献

1
Insights into Spt6: a histone chaperone that functions in transcription, DNA replication, and genome stability.
Trends Genet. 2023 Nov;39(11):858-872. doi: 10.1016/j.tig.2023.06.008. Epub 2023 Jul 20.

本文引用的文献

1
The Gene Ontology Resource: 20 years and still GOing strong.
Nucleic Acids Res. 2019 Jan 8;47(D1):D330-D338. doi: 10.1093/nar/gky1055.
2
Taking cohesin and condensin in context.
PLoS Genet. 2018 Jan 25;14(1):e1007118. doi: 10.1371/journal.pgen.1007118. eCollection 2018 Jan.
5
Aggregation of Mod5 is affected by tRNA binding with implications for tRNA gene-mediated silencing.
FEBS Lett. 2017 Jun;591(11):1601-1610. doi: 10.1002/1873-3468.12627. Epub 2017 May 22.
6
KDM5 lysine demethylases are involved in maintenance of 3'UTR length.
Sci Adv. 2016 Nov 18;2(11):e1501662. doi: 10.1126/sciadv.1501662. eCollection 2016 Nov.
7
Heterogeneous Spatial Distribution of Transcriptional Activity in Budding Yeast Nuclei.
Biophys J. 2017 Feb 7;112(3):491-504. doi: 10.1016/j.bpj.2016.11.3201. Epub 2016 Dec 28.
8
ChIP bias as a function of cross-linking time.
Chromosome Res. 2016 May;24(2):175-81. doi: 10.1007/s10577-015-9509-1. Epub 2015 Dec 21.
9
The poly(A)-binding protein Nab2 functions in RNA polymerase III transcription.
Genes Dev. 2015 Jul 15;29(14):1565-75. doi: 10.1101/gad.266205.115.
10
ArrayExpress update--simplifying data submissions.
Nucleic Acids Res. 2015 Jan;43(Database issue):D1113-6. doi: 10.1093/nar/gku1057. Epub 2014 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验