Jung Jin-Young, Woong Kim Dae, Kim Dong-Hyung, Joo Park Tae, Wehrspohn Ralf B, Lee Jung-Ho
Department of Materials and Chemical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do, 15588, Republic of Korea.
Institute of Physics, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany.
Sci Rep. 2019 Jun 24;9(1):9132. doi: 10.1038/s41598-019-45672-4.
The use of a photoelectrochemical device is an efficient method of converting solar energy into hydrogen fuel via water splitting reactions. One of the best photoelectrode materials is Si, which absorbs a broad wavelength range of incident light and produces a high photocurrent level (44 mA·cm). However, the maximum photovoltage that can be generated in single-junction Si devices (0.75 V) is much lower than the voltage required for a water splitting reaction (>1.6 V). In addition, the Si surface is electrochemically oxidized or reduced when it comes into direct contact with the aqueous electrolyte. Here, we propose the hybridization of the photoelectrochemical device with a thermoelectric device, where the Seebeck voltage generated by the thermal energy triggers the self-biased water splitting reaction without compromising the photocurrent level at 42 mA cm. In this hybrid device p-Si, where the surface is protected by HfO/SiO bilayers, is used as a photocathode. The HfO exhibits high corrosion resistance and protection ability, thereby ensuring stability. On applying the Seebeck voltage, the tunneling barrier of HfO is placed at a negligible energy level in the electron transfer from Si to the electrolyte, showing charge transfer kinetics independent of the HfO thickness. These findings serve as a proof-of-concept of the stable and high-efficiency production of hydrogen fuel by the photoelectrochemical-thermoelectric hybrid devices.
使用光电化学装置是通过水分解反应将太阳能转化为氢燃料的一种有效方法。最佳光电极材料之一是硅,它能吸收宽波长范围的入射光并产生高光电流水平(约44 mA·cm)。然而,单结硅装置中可产生的最大光电压(约0.75 V)远低于水分解反应所需的电压(>1.6 V)。此外,当硅表面与水性电解质直接接触时会发生电化学氧化或还原。在此,我们提出将光电化学装置与热电装置进行杂交,其中热能产生的塞贝克电压触发自偏置水分解反应,同时不影响42 mA cm时的光电流水平。在这种混合装置中,表面由HfO/SiO双层保护的p型硅用作光电阴极。HfO具有高耐腐蚀性和保护能力,从而确保稳定性。施加塞贝克电压时,在从硅到电解质的电子转移中,HfO的隧道势垒处于可忽略的能级,显示出与HfO厚度无关的电荷转移动力学。这些发现证明了光电化学 - 热电混合装置稳定高效生产氢燃料的概念。