Suppr超能文献

水产养殖设施中的固液食品半自动分配器。

A Semi-Automatic Dispenser for Solid and Liquid Food in Aquatic Facilities.

机构信息

1Laboratoire Jean Perrin, LJP, Centre National de la Recherche Scientifique, Sorbonne Université, Paris, France.

2Institut de Biologie Paris-Seine (IBPS), Aquatic Facility, Sorbonne Université, Paris, France.

出版信息

Zebrafish. 2019 Aug;16(4):401-407. doi: 10.1089/zeb.2019.1733. Epub 2019 Jun 25.

Abstract

We present a novel, low-footprint and low-cost semi-automatic system for delivering solid and liquid food to zebrafish, and more generally to aquatic animals raised in racks of tanks. It is composed of a portable main module equipped with a contactless reader that adjusts the quantity to deliver for each tank, and either a solid food module or a liquid food module. Solid food comprises virtually any kind of dry powder or grains below 2 mm in diameter, and, for liquid-mediated food, brine shrimps () and rotifers () have been successfully tested. Real-world testing, feedback, and validation have been performed in a zebrafish facility for several months. In comparison with manual feeding this system mitigates the appearance of musculoskeletal disorders among regularly-feeding staff, and let operators observe the animals' behavior instead of being focused on quantities to deliver. We also tested the accuracy of both humans and our dispenser and found that the semi-automatic system is much more reliable, with respectively 7-fold and 84-fold drops in standard deviation for solid and liquid food.

摘要

我们提出了一种新颖的、低足迹和低成本的半自动系统,用于向斑马鱼输送固体和液体食物,更广泛地说,用于向饲养在罐架中的水生动物输送。它由一个便携式主模块组成,该模块配备了一个非接触式读取器,可以为每个水箱调整要输送的数量,并且可以是固体食物模块或液体食物模块。固体食物包括实际上任何直径小于 2 毫米的干粉末或颗粒,并且已经成功测试了盐水虾()和轮虫()的液体介导食物。在几个月的时间里,在一个斑马鱼设施中进行了实际测试、反馈和验证。与手动喂养相比,该系统减轻了定期喂养工作人员出现肌肉骨骼疾病的现象,并且让操作人员观察动物的行为,而不是专注于要输送的数量。我们还测试了人类和我们的分配器的准确性,发现半自动系统更加可靠,固体食物和液体食物的标准偏差分别降低了 7 倍和 84 倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73fd/6685217/0c02250c2656/fig-1.jpg

相似文献

1
A Semi-Automatic Dispenser for Solid and Liquid Food in Aquatic Facilities.
Zebrafish. 2019 Aug;16(4):401-407. doi: 10.1089/zeb.2019.1733. Epub 2019 Jun 25.
3
Contested Paradigm in Raising Zebrafish (Danio rerio).
Zebrafish. 2018 Jun;15(3):295-309. doi: 10.1089/zeb.2017.1515. Epub 2018 Feb 27.
4
A Novel Method for Rearing Zebrafish by Using Freshwater Rotifers (Brachionus calyciflorus).
Zebrafish. 2015 Aug;12(4):288-95. doi: 10.1089/zeb.2014.1032. Epub 2015 May 4.
5
Methods for culturing saltwater rotifers (Brachionus plicatilis) for rearing larval zebrafish.
Zebrafish. 2012 Sep;9(3):140-6. doi: 10.1089/zeb.2012.0771. Epub 2012 Sep 5.
7
Nonhatching Decapsulated Artemia Cysts As a Replacement to Artemia Nauplii in Juvenile and Adult Zebrafish Culture.
Zebrafish. 2015 Dec;12(6):457-61. doi: 10.1089/zeb.2014.1031. Epub 2014 Dec 11.
8
Dried Rotifer Sheet: A Novel Live Feed for Rearing First-Feeding Larvae.
Zebrafish. 2018 Jun;15(3):291-294. doi: 10.1089/zeb.2017.1553. Epub 2018 Apr 24.
10
A novel food-delivery device for neurophysiological and neuropsychological studies in monkeys.
J Neurosci Methods. 2001 Aug 30;109(2):129-35. doi: 10.1016/s0165-0270(01)00406-x.

引用本文的文献

1
ZAF, the first open source fully automated feeder for aquatic facilities.
Elife. 2021 Dec 9;10:e74234. doi: 10.7554/eLife.74234.
2
FastTrack: An open-source software for tracking varying numbers of deformable objects.
PLoS Comput Biol. 2021 Feb 11;17(2):e1008697. doi: 10.1371/journal.pcbi.1008697. eCollection 2021 Feb.

本文引用的文献

1
Transparent Danionella translucida as a genetically tractable vertebrate brain model.
Nat Methods. 2018 Nov;15(11):977-983. doi: 10.1038/s41592-018-0144-6. Epub 2018 Oct 15.
2
Robotic exoskeletons: The current pros and cons.
World J Orthop. 2018 Sep 18;9(9):112-119. doi: 10.5312/wjo.v9.i9.112.
3
10th European Zebrafish Meeting 2017, Budapest: Husbandry Workshop Summary.
Zebrafish. 2018 Apr;15(2):213-215. doi: 10.1089/zeb.2017.1548. Epub 2018 Jan 2.
4
International survey on the use and welfare of zebrafish Danio rerio in research.
J Fish Biol. 2017 May;90(5):1891-1905. doi: 10.1111/jfb.13278. Epub 2017 Feb 20.
5
Mapping of zebrafish research: a global outlook.
Zebrafish. 2013 Dec;10(4):510-7. doi: 10.1089/zeb.2012.0854. Epub 2013 Oct 16.
6
Key issues concerning environmental enrichment for laboratory-held fish species.
Lab Anim. 2009 Apr;43(2):107-20. doi: 10.1258/la.2007.007023. Epub 2008 Nov 17.
7
Medaka as a research organism: past, present and future.
Mech Dev. 2004 Jul;121(7-8):599-604. doi: 10.1016/j.mod.2004.03.011.
8
Production of clones of homozygous diploid zebra fish (Brachydanio rerio).
Nature. 1981 May 28;291(5813):293-6. doi: 10.1038/291293a0.
9
Single particle tracking. Analysis of diffusion and flow in two-dimensional systems.
Biophys J. 1991 Oct;60(4):910-21. doi: 10.1016/S0006-3495(91)82125-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验