Suppr超能文献

机器人外骨骼:当前的利弊

Robotic exoskeletons: The current pros and cons.

作者信息

Gorgey Ashraf S

机构信息

Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, VA 23249, United States.

出版信息

World J Orthop. 2018 Sep 18;9(9):112-119. doi: 10.5312/wjo.v9.i9.112.

Abstract

Robotic exoskeletons have emerged as rehabilitation tool that may ameliorate several of the existing health-related consequences after spinal cord injury (SCI). However, evidence to support its clinical application is still lacking considering their prohibitive cost. The current mini-review is written to highlight the main limitations and potential benefits of using exoskeletons in the rehabilitation of persons with SCI. We have recognized two main areas relevant to the design of exoskeletons and to their applications on major health consequences after SCI. The design prospective refers to safety concerns, fitting time and speed of exoskeletons. The health prospective refers to factors similar to body weight, physical activity, pressure injuries and bone health. Clinical trials are currently underway to address some of these limitations and to maximize the benefits in rehabilitation settings. Future directions highlight the need to use exoskeletons in conjunction with other existing and emerging technologies similar to functional electrical stimulation and brain-computer interface to address major limitations. Exoskeletons have the potential to revolutionize rehabilitation following SCI; however, it is still premature to make solid recommendations about their clinical use after SCI.

摘要

机器人外骨骼已成为一种康复工具,可能会改善脊髓损伤(SCI)后现有的一些与健康相关的后果。然而,考虑到其高昂的成本,支持其临床应用的证据仍然不足。当前的这篇小型综述旨在强调在脊髓损伤患者康复中使用外骨骼的主要局限性和潜在益处。我们认识到与外骨骼设计及其对脊髓损伤后主要健康后果的应用相关的两个主要领域。设计方面涉及外骨骼的安全问题、适配时间和速度。健康方面涉及与体重、身体活动、压疮和骨骼健康等类似的因素。目前正在进行临床试验以解决其中一些局限性,并在康复环境中最大化益处。未来的方向强调需要将外骨骼与其他现有的和新兴的技术(如功能性电刺激和脑机接口)结合使用,以解决主要局限性。外骨骼有潜力彻底改变脊髓损伤后的康复;然而,就其在脊髓损伤后的临床使用做出确凿的推荐仍为时过早。

相似文献

1
Robotic exoskeletons: The current pros and cons.
World J Orthop. 2018 Sep 18;9(9):112-119. doi: 10.5312/wjo.v9.i9.112.
2
Exoskeletons for Personal Use After Spinal Cord Injury.
Arch Phys Med Rehabil. 2021 Feb;102(2):331-337. doi: 10.1016/j.apmr.2019.05.028. Epub 2019 Jun 20.
4
Clinician Perceptions of Robotic Exoskeletons for Locomotor Training After Spinal Cord Injury: A Qualitative Approach.
Arch Phys Med Rehabil. 2021 Feb;102(2):203-215. doi: 10.1016/j.apmr.2020.08.024. Epub 2020 Nov 7.
6
Robotic exoskeletons for reengaging in everyday activities: promises, pitfalls, and opportunities.
Disabil Rehabil. 2019 Mar;41(5):560-563. doi: 10.1080/09638288.2017.1398786. Epub 2017 Nov 7.
8
[Exoskeletons for rehabilitation of patients with spinal cord injuries. Options and limitations].
Unfallchirurg. 2015 Feb;118(2):130-7. doi: 10.1007/s00113-014-2616-1.
10
A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy.
Crit Rev Biomed Eng. 2013;41(4-5):343-63. doi: 10.1615/critrevbiomedeng.2014010453.

引用本文的文献

1
Wearable Robots for Rehabilitation and Assistance of Gait: A Narrative Review.
Ann Rehabil Med. 2025 Aug;49(4):187-195. doi: 10.5535/arm.250093. Epub 2025 Aug 18.
3
A Bionic Knee Exoskeleton Design with Variable Stiffness via Rope-Based Artificial Muscle Actuation.
Biomimetics (Basel). 2025 Jul 1;10(7):424. doi: 10.3390/biomimetics10070424.
5
Repair mechanisms of the central nervous system: From axon sprouting to remyelination.
Neurotherapeutics. 2025 May 9:e00583. doi: 10.1016/j.neurot.2025.e00583.
6
Personalized Stem Cell-Based Regeneration in Spinal Cord Injury Care.
Int J Mol Sci. 2025 Apr 19;26(8):3874. doi: 10.3390/ijms26083874.
9
Animals as Architects: Building the Future of Technology-Supported Rehabilitation with Biomimetic Principles.
Biomimetics (Basel). 2024 Nov 22;9(12):723. doi: 10.3390/biomimetics9120723.
10
The use of exoskeleton robotic training on lower extremity function in spinal cord injuries: A systematic review.
J Orthop. 2024 Oct 30;65:1-7. doi: 10.1016/j.jor.2024.10.036. eCollection 2025 Jul.

本文引用的文献

1
Prevalence of Obesity After Spinal Cord Injury.
Top Spinal Cord Inj Rehabil. 2007 Spring;12(4):1-7. doi: 10.1310/sci1204-1.
2
Exoskeleton Training May Improve Level of Physical Activity After Spinal Cord Injury: A Case Series.
Top Spinal Cord Inj Rehabil. 2017 Summer;23(3):245-255. doi: 10.1310/sci16-00025. Epub 2017 May 4.
4
Evidence-based scientific exercise guidelines for adults with spinal cord injury: an update and a new guideline.
Spinal Cord. 2018 Apr;56(4):308-321. doi: 10.1038/s41393-017-0017-3. Epub 2017 Oct 25.
7
A lower-extremity exoskeleton improves knee extension in children with crouch gait from cerebral palsy.
Sci Transl Med. 2017 Aug 23;9(404). doi: 10.1126/scitranslmed.aam9145.
10
Brain-computer interfaces for communication and rehabilitation.
Nat Rev Neurol. 2016 Sep;12(9):513-25. doi: 10.1038/nrneurol.2016.113. Epub 2016 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验