Suppr超能文献

评估核糖开关的最优性。

Evaluating riboswitch optimality.

作者信息

Wayment-Steele Hannah, Wu Michelle, Gotrik Michael, Das Rhiju

机构信息

Department of Chemistry, Stanford University, Stanford, CA, United States.

Program in Biomedical Informatics, Stanford University, Stanford, CA, United States.

出版信息

Methods Enzymol. 2019;623:417-450. doi: 10.1016/bs.mie.2019.05.028. Epub 2019 Jun 18.

Abstract

Riboswitches are RNA elements that recognize diverse chemical and biomolecular inputs, and transduce this recognition process to genetic, fluorescent, and other engineered outputs using RNA conformational changes. These systems are pervasive in cellular biology and are a promising biotechnology with applications in genetic regulation and biosensing. Here, we derive a simple expression bounding the activation ratio-the proportion of RNA in the active vs. inactive states-for both ON and OFF riboswitches that operate near thermodynamic equilibrium: 1+[I]/K, where [I] is the input ligand concentration and K is the intrinsic dissociation constant of the aptamer module toward the input ligand. A survey of published studies of natural and synthetic riboswitches confirms that the vast majority of empirically measured activation ratios have remained well below this thermodynamic limit. A few natural and synthetic riboswitches achieve activation ratios close to the limit, and these molecules highlight important principles for achieving high riboswitch performance. For several applications, including "light-up" fluorescent sensors and chemically-controlled CRISPR/Cas complexes, the thermodynamic limit has not yet been achieved, suggesting that current tools are operating at suboptimal efficiencies. Future riboswitch studies will benefit from comparing observed activation ratios to this simple expression for the optimal activation ratio. We present experimental and computational suggestions for how to make these quantitative comparisons and suggest new molecular mechanisms that may allow non-equilibrium riboswitches to surpass the derived limit.

摘要

核糖开关是一种RNA元件,能够识别多种化学和生物分子输入,并利用RNA构象变化将这种识别过程转化为遗传、荧光和其他工程输出。这些系统在细胞生物学中普遍存在,是一种有前途的生物技术,可应用于基因调控和生物传感。在这里,我们推导出一个简单的表达式,用于界定在热力学平衡附近运行的开启型和关闭型核糖开关的激活率(即处于活性状态与非活性状态的RNA比例):1 + [I]/K,其中[I]是输入配体浓度,K是适体模块对输入配体的固有解离常数。对已发表的天然和合成核糖开关研究的调查证实,绝大多数通过实验测量的激活率仍远低于这个热力学极限。少数天然和合成核糖开关的激活率接近该极限,这些分子突出了实现高核糖开关性能的重要原则。对于包括“点亮”荧光传感器和化学控制的CRISPR/Cas复合物在内的几种应用,尚未达到热力学极限,这表明当前工具的运行效率并非最优。未来的核糖开关研究将受益于将观察到的激活率与这个最优激活率的简单表达式进行比较。我们提出了关于如何进行这些定量比较的实验和计算建议,并提出了可能使非平衡核糖开关超越推导极限的新分子机制。

相似文献

1
Evaluating riboswitch optimality.
Methods Enzymol. 2019;623:417-450. doi: 10.1016/bs.mie.2019.05.028. Epub 2019 Jun 18.
2
The dynamic nature of RNA as key to understanding riboswitch mechanisms.
Acc Chem Res. 2011 Dec 20;44(12):1339-48. doi: 10.1021/ar200035g. Epub 2011 Jun 16.
3
Using reweighted pulling simulations to characterize conformational changes in riboswitches.
Methods Enzymol. 2015;553:139-62. doi: 10.1016/bs.mie.2014.10.055. Epub 2015 Feb 3.
4
Automated physics-based design of synthetic riboswitches from diverse RNA aptamers.
Nucleic Acids Res. 2016 Jan 8;44(1):1-13. doi: 10.1093/nar/gkv1289. Epub 2015 Nov 30.
5
Designing fluorescent biosensors using circular permutations of riboswitches.
Methods. 2018 Jul 1;143:102-109. doi: 10.1016/j.ymeth.2018.02.014. Epub 2018 Feb 16.
6
Thermodynamic and kinetic folding of riboswitches.
Methods Enzymol. 2015;553:193-213. doi: 10.1016/bs.mie.2014.10.060. Epub 2015 Feb 12.
7
Computational Methods for Modeling Aptamers and Designing Riboswitches.
Int J Mol Sci. 2017 Nov 17;18(11):2442. doi: 10.3390/ijms18112442.
9
Computational study of unfolding and regulation mechanism of preQ1 riboswitches.
PLoS One. 2012;7(9):e45239. doi: 10.1371/journal.pone.0045239. Epub 2012 Sep 17.
10
Engineering and In Vivo Applications of Riboswitches.
Annu Rev Biochem. 2017 Jun 20;86:515-539. doi: 10.1146/annurev-biochem-060815-014628. Epub 2017 Mar 30.

引用本文的文献

1
Engineering acyclovir-induced RNA nanodevices for reversible and tunable control of aptamer function.
Cell Chem Biol. 2024 Oct 17;31(10):1827-1838.e7. doi: 10.1016/j.chembiol.2024.07.017. Epub 2024 Aug 26.
2
Compact RNA sensors for increasingly complex functions of multiple inputs.
bioRxiv. 2024 Jan 16:2024.01.04.572289. doi: 10.1101/2024.01.04.572289.
3
RNA secondary structure packages evaluated and improved by high-throughput experiments.
Nat Methods. 2022 Oct;19(10):1234-1242. doi: 10.1038/s41592-022-01605-0. Epub 2022 Oct 3.
4
Crowdsourced RNA design discovers diverse, reversible, efficient, self-contained molecular switches.
Proc Natl Acad Sci U S A. 2022 May 3;119(18):e2112979119. doi: 10.1073/pnas.2112979119. Epub 2022 Apr 26.
5
Automated Design of Diverse Stand-Alone Riboswitches.
ACS Synth Biol. 2019 Aug 16;8(8):1838-1846. doi: 10.1021/acssynbio.9b00142. Epub 2019 Jul 29.

本文引用的文献

1
Co-Transcriptional Molecular Assembly Results in a Kinetically Controlled Irreversible RNA Conformational Switch.
Anal Chem. 2018 Oct 2;90(19):11193-11197. doi: 10.1021/acs.analchem.8b03427. Epub 2018 Sep 12.
2
A multicolor riboswitch-based platform for imaging of RNA in live mammalian cells.
Nat Chem Biol. 2018 Oct;14(10):964-971. doi: 10.1038/s41589-018-0103-7. Epub 2018 Jul 30.
3
Predicting Cotranscriptional Folding Kinetics For Riboswitch.
J Phys Chem B. 2018 Aug 2;122(30):7484-7496. doi: 10.1021/acs.jpcb.8b04249. Epub 2018 Jul 19.
4
In silico design of ligand triggered RNA switches.
Methods. 2018 Jul 1;143:90-101. doi: 10.1016/j.ymeth.2018.04.003. Epub 2018 Apr 13.
5
Designing fluorescent biosensors using circular permutations of riboswitches.
Methods. 2018 Jul 1;143:102-109. doi: 10.1016/j.ymeth.2018.02.014. Epub 2018 Feb 16.
7
9
Metalloriboswitches: RNA-based inorganic ion sensors that regulate genes.
J Biol Chem. 2017 Jun 9;292(23):9441-9450. doi: 10.1074/jbc.R117.787713. Epub 2017 Apr 28.
10
Engineering and In Vivo Applications of Riboswitches.
Annu Rev Biochem. 2017 Jun 20;86:515-539. doi: 10.1146/annurev-biochem-060815-014628. Epub 2017 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验