Suppr超能文献

萜烯合酶基因通过水平基因转移起源于细菌,有助于真菌萜类化合物的多样性。

Terpene Synthase Genes Originated from Bacteria through Horizontal Gene Transfer Contribute to Terpenoid Diversity in Fungi.

机构信息

Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA.

Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.

出版信息

Sci Rep. 2019 Jun 25;9(1):9223. doi: 10.1038/s41598-019-45532-1.

Abstract

Fungi are successful eukaryotes of wide distribution. They are known as rich producers of secondary metabolites, especially terpenoids, which are important for fungi-environment interactions. Horizontal gene transfer (HGT) is an important mechanism contributing to genetic innovation of fungi. However, it remains unclear whether HGT has played a role in creating the enormous chemical diversity of fungal terpenoids. Here we report that fungi have acquired terpene synthase genes (TPSs), which encode pivotal enzymes for terpenoid biosynthesis, from bacteria through HGT. Phylogenetic analysis placed the majority of fungal and bacterial TPS genes from diverse taxa into two clades, indicating ancient divergence. Nested in the bacterial TPS clade is a number of fungal TPS genes that are inferred as the outcome of HGT. These include a monophyletic clade of nine fungal TPS genes, designated as BTPSL for bacterial TPS-like genes, from eight species of related entomopathogenic fungi, including seven TPSs from six species in the genus Metarhizium. In vitro enzyme assays demonstrate that all seven BTPSL genes from the genus Metarhizium encode active enzymes with sesquiterpene synthase activities of two general product profiles. By analyzing the catalytic activity of two resurrected ancestral BTPSLs and one closely related bacterial TPS, the trajectory of functional evolution of BTPSLs after HGT from bacteria to fungi and functional divergence within Metarhizium could be traced. Using M. brunneum as a model species, both BTPSLs and typical fungal TPSs were demonstrated to be involved in the in vivo production of terpenoids, illustrating the general importance of HGT of TPS genes from bacteria as a mechanism contributing to terpenoid diversity in fungi.

摘要

真菌是分布广泛的成功真核生物。它们是次生代谢产物,尤其是萜类化合物的丰富生产者,萜类化合物对真菌-环境相互作用很重要。水平基因转移(HGT)是促进真菌遗传创新的重要机制。然而,HGT 是否在创造真菌萜类化合物的巨大化学多样性方面发挥了作用仍不清楚。在这里,我们报告真菌通过 HGT 从细菌中获得了萜烯合酶基因(TPSs),这些基因编码萜类生物合成的关键酶。系统发育分析将来自不同类群的真菌和细菌 TPS 基因的大多数归入两个分支,表明它们存在古老的分歧。在细菌 TPS 分支中嵌套着许多真菌 TPS 基因,这些基因被推断为 HGT 的结果。其中包括来自 8 种相关昆虫病原真菌的 9 个真菌 TPS 基因的单系群,被指定为细菌 TPS 样基因(BTPSL),包括来自 7 个物种的 7 个 TPSs。体外酶测定表明,来自 7 个物种的属中的 7 个 BTPSL 基因均编码具有两种通用产物谱的活性酶。通过分析两个复活的祖先 BTPSL 和一个密切相关的细菌 TPS 的催化活性,可以追踪 BTPSL 在从细菌到真菌的 HGT 后功能进化的轨迹以及属内的功能分化。使用 M. brunneum 作为模型物种,证明 BTPSL 和典型的真菌 TPS 都参与了萜类化合物的体内产生,说明了细菌 TPS 基因的 HGT 作为真菌萜类化合物多样性的一种机制的普遍重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4100/6592883/ebe7cd3981c5/41598_2019_45532_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验