Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA.
Department of Neurology, Massachusetts General Hospital, Boston, MA.
Crit Care Med. 2019 Oct;47(10):1416-1423. doi: 10.1097/CCM.0000000000003840.
Electroencephalogram features predict neurologic recovery following cardiac arrest. Recent work has shown that prognostic implications of some key electroencephalogram features change over time. We explore whether time dependence exists for an expanded selection of quantitative electroencephalogram features and whether accounting for this time dependence enables better prognostic predictions.
Retrospective.
ICUs at four academic medical centers in the United States.
Comatose patients with acute hypoxic-ischemic encephalopathy.
None.
We analyzed 12,397 hours of electroencephalogram from 438 subjects. From the electroencephalogram, we extracted 52 features that quantify signal complexity, category, and connectivity. We modeled associations between dichotomized neurologic outcome (good vs poor) and quantitative electroencephalogram features in 12-hour intervals using sequential logistic regression with Elastic Net regularization. We compared a predictive model using time-varying features to a model using time-invariant features and to models based on two prior published approaches. Models were evaluated for their ability to predict binary outcomes using area under the receiver operator curve, model calibration (how closely the predicted probability of good outcomes matches the observed proportion of good outcomes), and sensitivity at several common specificity thresholds of interest. A model using time-dependent features outperformed (area under the receiver operator curve, 0.83 ± 0.08) one trained with time-invariant features (0.79 ± 0.07; p < 0.05) and a random forest approach (0.74 ± 0.13; p < 0.05). The time-sensitive model was also the best-calibrated.
The statistical association between quantitative electroencephalogram features and neurologic outcome changed over time, and accounting for these changes improved prognostication performance.
脑电图特征可预测心搏骤停后的神经恢复。最近的研究表明,一些关键脑电图特征的预后意义随时间而变化。我们探讨了是否存在时间依赖性,以及是否存在时间依赖性,是否可以更好地预测预后。
回顾性研究。
美国四家学术医疗中心的 ICU。
患有急性缺氧缺血性脑病的昏迷患者。
无。
我们分析了 438 例患者的 12397 小时脑电图。从脑电图中,我们提取了 52 个特征,这些特征可量化信号的复杂性、类别和连通性。我们使用具有弹性网络正则化的序贯逻辑回归,在 12 小时间隔内,对二分类神经结局(良好与不良)与定量脑电图特征之间的关联进行建模。我们将使用时变特征的预测模型与使用时不变特征的模型以及基于两种先前发表方法的模型进行了比较。我们使用接收者操作特征曲线下面积、模型校准(良好结局的预测概率与良好结局的实际比例匹配程度)以及在几个常见的特异性感兴趣阈值下的敏感性来评估模型预测二分类结局的能力。与使用时不变特征(0.79±0.07;p<0.05)和随机森林方法(0.74±0.13;p<0.05)相比,使用时变特征的模型表现更好(接受者操作特征曲线下面积,0.83±0.08;p<0.05)。时敏模型的校准也最好。
定量脑电图特征与神经结局之间的统计关联随时间而变化,考虑这些变化可提高预后预测性能。