IEEE Trans Biomed Eng. 2022 May;69(5):1813-1825. doi: 10.1109/TBME.2021.3139007. Epub 2022 Apr 21.
Most cardiac arrest patients who are successfully resuscitated are initially comatose due to hypoxic-ischemic brain injury. Quantitative electroencephalography (EEG) provides valuable prognostic information. However, prior approaches largely rely on snapshots of the EEG, without taking advantage of temporal information.
We present a recurrent deep neural network with the goal of capturing temporal dynamics from longitudinal EEG data to predict long-term neurological outcomes. We utilized a large international dataset of continuous EEG recordings from 1,038 cardiac arrest patients from seven hospitals in Europe and the US. Poor outcome was defined as a Cerebral Performance Category (CPC) score of 3-5, and good outcome as CPC score 0-2 at 3 to 6-months after cardiac arrest. Model performance is evaluated using 5-fold cross validation.
The proposed approach provides predictions which improve over time, beginning from an area under the receiver operating characteristic curve (AUC-ROC) of 0.78 (95% CI: 0.72-0.81) at 12 hours, and reaching 0.88 (95% CI: 0.85-0.91) by 66 h after cardiac arrest. At 66 h, (sensitivity, specificity) points of interest on the ROC curve for predicting poor outcomes were (32,99)%, (55,95)%, and (62,90)%, (99,23)%, (95,47)%, and (90,62)%; whereas for predicting good outcome, the corresponding operating points were (17,99)%, (47,95)%, (62,90)%, (99,19)%, (95,48)%, (70,90)%. Moreover, the model provides predicted probabilities that closely match the observed frequencies of good and poor outcomes (calibration error 0.04).
These findings suggest that accounting for EEG trend information can substantially improve prediction of neurologic outcomes for patients with coma following cardiac arrest.
大多数成功复苏的心脏骤停患者最初因缺氧缺血性脑损伤而处于昏迷状态。定量脑电图(EEG)提供有价值的预后信息。然而,先前的方法在很大程度上依赖于 EEG 的快照,而没有利用时间信息。
我们提出了一种递归深度神经网络,旨在从纵向 EEG 数据中捕获时间动态,以预测长期神经结局。我们利用了来自欧洲和美国 7 家医院的 1038 例心脏骤停患者的连续 EEG 记录的大型国际数据集。预后不良定义为脑功能预后分类(CPC)评分 3-5,预后良好定义为心脏骤停后 3 至 6 个月的 CPC 评分为 0-2。使用 5 折交叉验证评估模型性能。
该方法提供的预测结果随着时间的推移而不断提高,在心脏骤停后 12 小时时,接收者操作特征曲线(ROC)下面积(AUC-ROC)为 0.78(95%CI:0.72-0.81),在心脏骤停后 66 小时时达到 0.88(95%CI:0.85-0.91)。在 66 小时时,ROC 曲线上预测预后不良的感兴趣的(敏感性,特异性)点分别为(32,99)%、(55,95)%和(62,90)%、(99,23)%、(95,47)%和(90,62)%;而预测预后良好的对应工作点分别为(17,99)%、(47,95)%、(62,90)%、(99,19)%、(95,48)%、(70,90)%。此外,该模型提供的预测概率与良好和不良结局的观察频率非常匹配(校准误差为 0.04)。
这些发现表明,考虑 EEG 趋势信息可以大大提高心脏骤停后昏迷患者神经结局的预测准确性。