Division of Microbiology , CSIR-Central Drug Research Institute , Sector 10, Janakipuram Extension, Sitapur Road , Lucknow 226021 , Uttar Pradesh , India.
J Med Chem. 2019 Jul 25;62(14):6785-6795. doi: 10.1021/acs.jmedchem.9b00774. Epub 2019 Jul 15.
The alarming global rise in fatalities from multidrug-resistant () infections has underscored a need to develop new therapies to address this epidemic. Chemoproteomics is valuable in identifying targets for new drugs in different human diseases including bacterial infections. Targeting functional cysteines is particularly attractive, as they serve critical catalytic functions that enable bacterial survival. Here, we report an indole-based quinone epoxide scaffold with a unique boat-like conformation that allows steric control in modulating thiol reactivity. We extensively characterize a lead compound (), which potently inhibits clinically derived vancomycin-resistant . Leveraging diverse chemoproteomic platforms, we identify and biochemically validate important transcriptional factors as potent targets of . Interestingly, each identified transcriptional factor has a conserved catalytic cysteine residue that confers antibiotic tolerance to these bacteria. Thus, the chemical tools and biological targets that we describe here prospect new therapeutic paradigms in combatting infections.
全球范围内由耐多药()感染导致的致命病例数令人震惊地不断增加,这突显出有必要开发新的治疗方法来应对这一流行疾病。化学生物组学在鉴定针对包括细菌感染在内的不同人类疾病的新药靶点方面具有重要价值。针对功能性半胱氨酸是特别有吸引力的,因为它们发挥着关键的催化功能,使细菌得以存活。在这里,我们报告了一种基于吲哚的醌环氧化物支架,它具有独特的船形构象,允许在调节巯基反应性方面进行空间控制。我们对一种先导化合物()进行了广泛的表征,该化合物能够强烈抑制临床来源的耐万古霉素。利用不同的化学生物组学平台,我们确定并在生物化学上验证了重要的转录因子作为的有效靶点。有趣的是,每个鉴定出的转录因子都有一个保守的催化半胱氨酸残基,使这些细菌对抗生素产生耐受性。因此,我们在这里描述的化学工具和生物靶标为对抗感染提供了新的治疗范例。