Suppr超能文献

优势亲电试剂:共价药物研发的一种资源。

Privileged Electrophile Sensors: A Resource for Covalent Drug Development.

机构信息

Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14850, USA.

Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14850, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.

出版信息

Cell Chem Biol. 2017 Jul 20;24(7):787-800. doi: 10.1016/j.chembiol.2017.05.023. Epub 2017 Jun 22.

Abstract

This Perspective delineates how redox signaling affects the activity of specific enzyme isoforms and how this property may be harnessed for rational drug design. Covalent drugs have resurged in recent years and several reports have extolled the general virtues of developing irreversible inhibitors. Indeed, many modern pharmaceuticals contain electrophilic appendages. Several invoke a warhead that hijacks active-site nucleophiles whereas others take advantage of spectator nucleophilic side chains that do not participate in enzymatic chemistry, but are poised to bind/react with electrophiles. The latest data suggest that innate electrophile sensing-which enables rapid reaction with an endogenous signaling electrophile-is a quintessential resource for the development of covalent drugs. For instance, based on recent work documenting isoform-specific electrophile sensing, isozyme non-specific drugs may be converted to isozyme-specific analogs by hijacking privileged first-responder electrophile-sensing cysteines. Because this approach targets functionally relevant cysteines, we can simultaneously harness previously untapped moonlighting roles of enzymes linked to redox sensing.

摘要

这一看法阐述了氧化还原信号如何影响特定酶同工型的活性,以及如何利用这种特性进行合理的药物设计。近年来,共价药物重新兴起,有几项报告称赞了开发不可逆抑制剂的一般优点。事实上,许多现代药物都含有亲电基团。一些药物利用弹头劫持活性位点亲核试剂,而另一些药物则利用不参与酶化学的旁观者亲核侧链,但它们准备与亲电试剂结合/反应。最新数据表明,内源性亲电物感应——使快速与内源性信号亲电物反应——是开发共价药物的关键资源。例如,基于最近记录同工型特异性亲电物感应的工作,通过劫持特权的第一反应亲电物感应半胱氨酸,可以将同工型非特异性药物转化为同工型特异性类似物。因为这种方法针对的是功能相关的半胱氨酸,所以我们可以同时利用与氧化还原感应相关的酶的以前未开发的备用作用。

相似文献

1
Privileged Electrophile Sensors: A Resource for Covalent Drug Development.优势亲电试剂:共价药物研发的一种资源。
Cell Chem Biol. 2017 Jul 20;24(7):787-800. doi: 10.1016/j.chembiol.2017.05.023. Epub 2017 Jun 22.
5
Covalent Inhibition by a Natural Product-Inspired Latent Electrophile.受天然产物启发的潜伏亲电试剂的共价抑制。
J Am Chem Soc. 2023 May 24;145(20):11097-11109. doi: 10.1021/jacs.3c00598. Epub 2023 May 15.
8
Detection of electrophile-sensitive proteins.亲电试剂敏感蛋白的检测
Biochim Biophys Acta. 2014 Feb;1840(2):913-22. doi: 10.1016/j.bbagen.2013.09.003. Epub 2013 Sep 8.
9
Proteome-wide Map of Targets of T790M-EGFR-Directed Covalent Inhibitors.T790M-EGFR 定向共价抑制剂作用靶点的蛋白质组全景图。
Cell Chem Biol. 2017 Nov 16;24(11):1388-1400.e7. doi: 10.1016/j.chembiol.2017.08.017. Epub 2017 Sep 28.

引用本文的文献

1
Unraveling the nexus: Genomic instability and metabolism in cancer.解开关联:癌症中的基因组不稳定性与代谢
Cell Rep. 2025 Apr 22;44(4):115540. doi: 10.1016/j.celrep.2025.115540. Epub 2025 Apr 11.
5
Advances in high-throughput mass spectrometry in drug discovery.高通量质谱在药物发现中的进展。
EMBO Mol Med. 2023 Jan 11;15(1):e14850. doi: 10.15252/emmm.202114850. Epub 2022 Dec 14.
7
The emerging role of mass spectrometry-based proteomics in drug discovery.基于质谱的蛋白质组学在药物发现中的新作用。
Nat Rev Drug Discov. 2022 Sep;21(9):637-654. doi: 10.1038/s41573-022-00409-3. Epub 2022 Mar 29.

本文引用的文献

1
Waste disposal-An attractive strategy for cancer therapy.废物处理——癌症治疗的一种有吸引力的策略。
Science. 2017 Mar 17;355(6330):1163-1167. doi: 10.1126/science.aam7340. Epub 2017 Mar 16.
5
Ligand and Target Discovery by Fragment-Based Screening in Human Cells.基于片段筛选在人细胞中进行配体和靶点发现
Cell. 2017 Jan 26;168(3):527-541.e29. doi: 10.1016/j.cell.2016.12.029. Epub 2017 Jan 19.
7
Induced protein degradation: an emerging drug discovery paradigm.诱导蛋白降解:一种新兴的药物发现模式。
Nat Rev Drug Discov. 2017 Feb;16(2):101-114. doi: 10.1038/nrd.2016.211. Epub 2016 Nov 25.
8
Calpain research for drug discovery: challenges and potential.钙蛋白酶研究用于药物发现:挑战与潜力。
Nat Rev Drug Discov. 2016 Dec;15(12):854-876. doi: 10.1038/nrd.2016.212. Epub 2016 Nov 11.
9
T-REX on-demand redox targeting in live cells.T-REX 活细胞中按需氧化还原靶向。
Nat Protoc. 2016 Dec;11(12):2328-2356. doi: 10.1038/nprot.2016.114. Epub 2016 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验