Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14850, USA.
Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14850, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
Cell Chem Biol. 2017 Jul 20;24(7):787-800. doi: 10.1016/j.chembiol.2017.05.023. Epub 2017 Jun 22.
This Perspective delineates how redox signaling affects the activity of specific enzyme isoforms and how this property may be harnessed for rational drug design. Covalent drugs have resurged in recent years and several reports have extolled the general virtues of developing irreversible inhibitors. Indeed, many modern pharmaceuticals contain electrophilic appendages. Several invoke a warhead that hijacks active-site nucleophiles whereas others take advantage of spectator nucleophilic side chains that do not participate in enzymatic chemistry, but are poised to bind/react with electrophiles. The latest data suggest that innate electrophile sensing-which enables rapid reaction with an endogenous signaling electrophile-is a quintessential resource for the development of covalent drugs. For instance, based on recent work documenting isoform-specific electrophile sensing, isozyme non-specific drugs may be converted to isozyme-specific analogs by hijacking privileged first-responder electrophile-sensing cysteines. Because this approach targets functionally relevant cysteines, we can simultaneously harness previously untapped moonlighting roles of enzymes linked to redox sensing.
这一看法阐述了氧化还原信号如何影响特定酶同工型的活性,以及如何利用这种特性进行合理的药物设计。近年来,共价药物重新兴起,有几项报告称赞了开发不可逆抑制剂的一般优点。事实上,许多现代药物都含有亲电基团。一些药物利用弹头劫持活性位点亲核试剂,而另一些药物则利用不参与酶化学的旁观者亲核侧链,但它们准备与亲电试剂结合/反应。最新数据表明,内源性亲电物感应——使快速与内源性信号亲电物反应——是开发共价药物的关键资源。例如,基于最近记录同工型特异性亲电物感应的工作,通过劫持特权的第一反应亲电物感应半胱氨酸,可以将同工型非特异性药物转化为同工型特异性类似物。因为这种方法针对的是功能相关的半胱氨酸,所以我们可以同时利用与氧化还原感应相关的酶的以前未开发的备用作用。