Suppr超能文献

利用有髓神经纤维的有限元模型模拟阻抗变化。

Simulation of impedance changes with a FEM model of a myelinated nerve fibre.

机构信息

Department of Medical Physics, University College London, Gower Street, London WC1E 6BT, United Kingdom.

出版信息

J Neural Eng. 2019 Sep 17;16(5):056026. doi: 10.1088/1741-2552/ab2d1c.

Abstract

OBJECTIVE

Fast neural electrical impedance tomography (EIT) is a method which permits imaging of neuronal activity in nerves by measuring the associated impedance changes (dZ). Due to the small magnitudes of dZ signals, EIT parameters require optimization, which can be done using in silico modelling: apart from predicting the best parameters for imaging, it can also help to validate experimental data and explain the nature of the observed dZ. This has previously been completed for unmyelinated fibres, but an extension to myelinated fibres is required for the development of a full nerve model which could aid imaging neuronal traffic at the fascicular level and optimise neuromodulation of the supplied internal organs to treat various diseases.

APPROACH

An active finite element method (FEM) model of a myelinated fibre coupled with external space was developed. A spatial dimension was added to the experimentally validated space-clamped model of a human sensory fibre using the double cable paradigm. Electrical parameters of the model were changed so that nodal and internodal membrane potential as well as propagation velocity agreed with experimental values. Impedance changes were simulated during activity under various conditions and the optimal parameters for imaging were determined.

MAIN RESULTS

When using AC, dZ could be recorded only at frequencies above 4 kHz, which is supported by experimental data. Optimal bandwidths for dZ measurement were found to increase with AC frequency.

SIGNIFICANCE

The novel fully bi-directionally coupled FEM model of a myelinated fibre was able to optimize EIT for myelinated fibres and explain the biophysical basis of the measured signals.

摘要

目的

快速神经电阻抗断层成像(EIT)是一种通过测量相关阻抗变化(dZ)来对神经中的神经元活动进行成像的方法。由于 dZ 信号幅度较小,因此需要对 EIT 参数进行优化,这可以通过计算机建模来实现:除了预测成像的最佳参数外,它还可以帮助验证实验数据并解释所观察到的 dZ 的性质。这已经针对无髓纤维完成,但需要将其扩展到有髓纤维,以开发完整的神经模型,该模型可以辅助在纤维束水平上对神经元活动进行成像,并优化对供应内部器官的神经调节,以治疗各种疾病。

方法

开发了一种有髓纤维的主动有限元方法(FEM)模型,并与外部空间耦合。使用双电缆范例,在经过实验验证的人类感觉纤维的空间钳制模型中添加了一个空间维度。改变模型的电参数,以使节点和节间膜电位以及传播速度与实验值一致。在各种条件下模拟活动期间的阻抗变化,并确定成像的最佳参数。

主要结果

当使用交流电(AC)时,仅在 4 kHz 以上的频率下才能记录到 dZ,这与实验数据一致。发现用于 dZ 测量的最佳带宽随 AC 频率的增加而增加。

意义

新型的全双向有髓纤维 FEM 模型能够优化有髓纤维的 EIT,并解释所测量信号的生物物理基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验