Suppr超能文献

神经中的弥散对复合动作电位和阻抗变化的影响:模型研究。

Effect of dispersion in nerve on compound action potential and impedance change: a modelling study.

机构信息

Department of Medical Physics, University College London, Gower Street, London WC1E 6BT, United Kingdom.

出版信息

Physiol Meas. 2019 Mar 22;40(3):034001. doi: 10.1088/1361-6579/ab08ce.

Abstract

OBJECTIVE

Electrical impedance tomography (EIT) is capable of imaging fast compound electrical activity (compound action potentials, or CAPs) inside peripheral nerves. The ability of EIT to detect impedance changes (dZ) which arise from the opening of ion channels during the CAP is limited by the dispersion with distance from the site of onset, as fibres have differing conduction velocities. The effect is largest for autonomic nerves mainly formed of slower conducting unmyelinated fibres where signals cannot be recorded more than a few cm away from the stimulation. However, as CAPs are biphasic, monophasic dZ are expected to be detectable further than them; testing this hypothesis was the main objective of this study.

APPROACH

An anatomically accurate FEM model and simplified statistical models of 50-fibre Hodgkin-Huxley and C-nociceptor nerves were developed with normally distributed conduction velocities; the statistical models were extended to realistic nerves.

MAIN RESULTS

Fifty-fibre models showed that dZ could persist further than biphasic CAPs, as these then cancelled. For realistic nerves consisting of Aα or Aβ fibres, significant dZ could be detected at 50 cm from the onset site with signal-to-noise ratios (SNR, mean  ±  s.d.) of 2.7  ±  0.2 and 1.8  ±  0.1 respectively; Aδ and rat sciatic nerve-at 20 cm (1.6  ±  0.03 and 1.6  ±  0.06), rat vagus-at 10 cm (1.6  ±  0.05); C fibres-at 1-2 cm (2.4  ±  0.02).

SIGNIFICANCE

This study provides a basis for determining the distance over which EIT may be used to image fascicular activity in electroceuticals and suggests dZ will persist further than CAPs if biphasic.

摘要

目的

电阻抗断层成像(EIT)能够对周围神经内的快速复合电活动(复合动作电位或 CAPs)进行成像。EIT 检测由于 CAP 期间离子通道开放而产生的阻抗变化(dZ)的能力受到与起始部位距离的分散的限制,因为纤维具有不同的传导速度。对于主要由传导速度较慢的无髓纤维组成的自主神经,这种影响最大,其中信号不能在离刺激几厘米以外的地方记录。然而,由于 CAPs 是双相的,预计单相 dZ 会比它们更远地被检测到;测试这一假设是本研究的主要目标。

方法

开发了具有正态分布传导速度的具有解剖学准确性的有限元模型和 50 纤维 Hodgkin-Huxley 和 C-伤害感受器神经的简化统计模型;统计模型扩展到了现实的神经。

主要结果

50 纤维模型表明,单相 CAPs 随后会抵消,因此 dZ 可以持续更远。对于由 Aα 或 Aβ 纤维组成的真实神经,在起始部位 50 cm 处可以检测到具有显著 dZ,信噪比(SNR,平均值±标准差)分别为 2.7±0.2 和 1.8±0.1;Aδ 和大鼠坐骨神经-在 20 cm 处(1.6±0.03 和 1.6±0.06),大鼠迷走神经-在 10 cm 处(1.6±0.05);C 纤维-在 1-2 cm 处(2.4±0.02)。

意义

本研究为确定 EIT 可用于成像电刺激器中束状活动的距离提供了基础,并表明如果是双相的,dZ 将持续比 CAPs 更远。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验