Ali Ihtisham, Suominen Olli, Gotchev Atanas, Morales Emilio Ruiz
Faculty of Information Technology and Communication, Tampere University, 33720 Tampere, Finland.
Fusion for Energy (F4E), ITER Delivery Department, Remote Handling Project Team, 08019 Barcelona, Spain.
Sensors (Basel). 2019 Jun 25;19(12):2837. doi: 10.3390/s19122837.
In this paper, we propose two novel methods for robot-world-hand-eye calibration and provide a comparative analysis against six state-of-the-art methods. We examine the calibration problem from two alternative geometrical interpretations, called 'hand-eye' and 'robot-world-hand-eye', respectively. The study analyses the effects of specifying the objective function as pose error or reprojection error minimization problem. We provide three real and three simulated datasets with rendered images as part of the study. In addition, we propose a robotic arm error modeling approach to be used along with the simulated datasets for generating a realistic response. The tests on simulated data are performed in both ideal cases and with pseudo-realistic robotic arm pose and visual noise. Our methods show significant improvement and robustness on many metrics in various scenarios compared to state-of-the-art methods.
在本文中,我们提出了两种用于机器人-世界-手眼校准的新方法,并与六种最先进的方法进行了对比分析。我们从两种不同的几何解释角度来研究校准问题,分别称为“手眼”和“机器人-世界-手眼”。该研究分析了将目标函数指定为姿态误差或重投影误差最小化问题的影响。作为研究的一部分,我们提供了三个真实数据集和三个带有渲染图像的模拟数据集。此外,我们提出了一种机器人手臂误差建模方法,该方法将与模拟数据集一起用于生成逼真的响应。对模拟数据的测试在理想情况下以及存在伪逼真机器人手臂姿态和视觉噪声的情况下进行。与最先进的方法相比,我们的方法在各种场景下的许多指标上都有显著改进和更高的鲁棒性。