Suppr超能文献

来自LH2和LH3的细菌叶绿素a分子的Q和Q吸收带。

Q and Q Absorption Bands for Bacteriochlorophyll a Molecules from LH2 and LH3.

作者信息

Anda André, Hansen Thorsten, De Vico Luca

机构信息

Chemical and Quantum Physics, School of Science , RMIT University , Melbourne , VIC 3001 , Australia.

ARC Centre of Excellence in Exciton Science, School of Science , RMIT University , Melbourne , VIC 3001 , Australia.

出版信息

J Phys Chem A. 2019 Jun 27;123(25):5283-5292. doi: 10.1021/acs.jpca.9b02877. Epub 2019 Jun 18.

Abstract

Light-harvesting systems 2 and 3 (LH2 and LH3) act as antennas for the initial light capture by photosynthetic purple bacteria, thus initiating the conversion of solar energy into chemical energy. The main absorbers are carotenoids and bacteriochlorophylls (BChls), which harvest different parts of the solar spectrum. The first two optical transitions in BChl produce the Q and Q absorption bands. The large size of BChl molecules has prevented accurate computational determination of the electronic structures for the relevant states, until we recently succeeded in obtaining the excitation energies and transition dipole moments of the first (Q ) transition for all BChls in LH2 and LH3 using multi-state multiconfigurational second-order perturbation theory calculations. In this work, we go one step further, compute the corresponding values for the Q transition, in line with previous work [ J. Am. Chem. Soc . 2017 , 139 , 7558 - 7567 ], and compare and assess our data against excitation energies obtained through time-dependent density functional theory methods. Interestingly, we find that the two transitions respond differently to BChls' geometrical factors, such as the macrocycle ring curvature and the dihedral torsion of the acetyl moiety. These findings will aid the unraveling of structure-function relationships for absorption and energy transfer processes in purple bacteria, and once again this demonstrates the viability of multireference quantum chemical methods as computational tools for the photophysics of biomolecules.

摘要

捕光系统2和3(LH2和LH3)作为光合紫色细菌最初捕获光的天线,从而启动太阳能向化学能的转化。主要吸收体是类胡萝卜素和细菌叶绿素(BChls),它们捕获太阳光谱的不同部分。BChl中的前两个光学跃迁产生Q 和Q 吸收带。BChl分子的大尺寸阻碍了对相关状态电子结构的精确计算确定,直到我们最近使用多态多构型二阶微扰理论计算成功获得了LH2和LH3中所有BChls的第一(Q )跃迁的激发能和跃迁偶极矩。在这项工作中,我们更进一步,按照之前的工作[《美国化学会志》2017年,139卷,7558 - 7567页]计算Q 跃迁的相应值,并将我们的数据与通过含时密度泛函理论方法获得的激发能进行比较和评估。有趣的是,我们发现这两个跃迁对BChls的几何因素(如大环环曲率和乙酰基部分的二面角扭转)的响应不同。这些发现将有助于揭示紫色细菌中吸收和能量转移过程的结构 - 功能关系,并且再次证明了多参考量子化学方法作为生物分子光物理计算工具的可行性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验